
eScholarship provides open access, scholarly publishing
services to the University of California and delivers a dynamic
research platform to scholars worldwide.

Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title:
Software Roadmap to Plug and Play Petaflop/s

Author:
Kramer, Bill
Carter, Jonathan
Skinner, David
Oliker, Lenny
Husbands, Parry
Hargrove, Paul
Shalf, John
Marques, Osni
Ng, Esmond
Drummond, Tony
Yelick, Kathy

Publication Date:
07-31-2006

Publication Info:
Lawrence Berkeley National Laboratory

Permalink:
http://escholarship.org/uc/item/2p550819

Keywords:
supercomputer high performance computing scalable software

Abstract:
In the next five years, the DOE expects to build systems that approach a petaflop in scale. In the
near term (two years), DOE will have several near-petaflops systems that are 10 percent to 25
percent of a peraflop-scale system. A common feature of these precursors to petaflop systems
(such as the Cray XT3 or the IBM BlueGene/L) is that they rely on an unprecedented degree of
concurrency, which puts stress on every aspect of HPC system design. Such complex systems will
likely break current best practices for fault resilience, I/O scaling, and debugging, and even raise
fundamental questions about languages and application programming models. It is important that
potential problems are anticipated far enough in advance that they can be addressed in time to
prepare the way for petaflop-scale systems. This report considers the following four questions:
(1) What software is on a critical path to make the systems work? (2) What are the strengths/
weaknesses of the vendors and of existing vendor solutions? (3) What are the local strengths at
the labs? (4) Who are other key players who will play a role and can help?

http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org/uc/lbnl
http://escholarship.org/uc/lbnl
http://escholarship.org/uc/
http://escholarship.org/uc/search?creator=Kramer%2C%20Bill
http://escholarship.org/uc/search?creator=Carter%2C%20Jonathan
http://escholarship.org/uc/search?creator=Skinner%2C%20David
http://escholarship.org/uc/search?creator=Oliker%2C%20Lenny
http://escholarship.org/uc/search?creator=Husbands%2C%20Parry
http://escholarship.org/uc/search?creator=Hargrove%2C%20Paul
http://escholarship.org/uc/search?creator=Shalf%2C%20John
http://escholarship.org/uc/search?creator=Marques%2C%20Osni
http://escholarship.org/uc/search?creator=Ng%2C%20Esmond
http://escholarship.org/uc/search?creator=Drummond%2C%20Tony
http://escholarship.org/uc/search?creator=Yelick%2C%20Kathy
http://escholarship.org/uc/item/2p550819

 LBNL-59999

Software Roadmap to Plug and Play Petaflop/s

Editor: Bill Kramer (wtkramer@lbl.gov)

Contributions from:
Jonathan Carter, David Skinner, Lenny Oliker, Parry Husbands, Paul Hargrove,

John Shalf, Osni Marques, Esmond Ng, Tony Drummond, Kathy Yelick, Bill Kramer

NERSC Center and Computational Research Divisions
Ernest Orlando Lawrence Berkeley National Laboratory

University of California
Berkeley, California 94720

July 2006

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing
Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

LBNL Software Roadmap to Plug and Play Petaflop/s 1

Software Roadmap to Plug and Play Petaflop/s
In the next five years, the DOE expects to build systems that approach a petaflop in scale. In the near term
(two years), DOE will have several “near-petaflops” systems that are 10% to 25% of a peraflop-scale
system. A common feature of these precursors to petaflop systems (such as the Cray XT3 or the IBM
BlueGene/L) is that they rely on an unprecedented degree of concurrency, which puts stress on every aspect
of HPC system design. Such complex systems will likely break current “best practices” for fault resilience,
I/O scaling, and debugging, and even raise fundamental questions about languages and application
programming models. It is important that potential problems are anticipated far enough in advance that they
can be addressed in time to prepare the way for petaflop-scale systems. DOE asked us to formulate our
response by considering the following four questions:

1. What software is on a critical path to make the systems work?

2. What are the strengths/weaknesses of the vendors and of existing vendor solutions?

3. What are the local strengths at the labs? (list of areas of expertise and names of people)

4. Who are other key players who will play a role and can help? (other labs, e.g., efforts at Sandia for
Red Storm)

Our response is organized as follows.

Section 1 provides a high-level answer to question #1, “What software is on the critical path to make the
systems work?” We broadened the response to include both hardware and software issues because the two
are so intricately entwined on systems of this scale. We also differentiate near-term (2007) challenges from
those that we anticipate in the long term (2008 and beyond).

Section 2 addresses question #2, “Describe the strengths and weaknesses of the vendors and existing
vendor solutions,” using data collected from the NERSC-5 procurement.

Section 3 addresses question #3, “What are the local strengths at the labs? (list of areas of expertise and
names of people)” by describing the local strengths at LBNL and NERSC for responding to the challenges
of petascale computing described in the earlier sections.

Section 4 addresses question #4, “Who are other key players who will play a role and can help? (other
labs, e.g., efforts at Sandia for Red Storm)” by identifying key players at other institutions who can be
considered key partners for addressing the problems posed in earlier sections.

Section 5 provides supplemental information regarding NERSC’s effort to use non-invasive workload
profiling to identify application requirements for future systems. The data collected by NERSC may be
valuable for proactively identifying bottlenecks in current systems and anticipating future application
requirements.

Section 6 describes a set of codes that provide good representation of the application requirements of the
broader DOE scientific community. The success of these codes is a bellwether for the overall success of
these computing platforms for DOE scientific applications.

Section 7 is a comprehensive production software requirements checklist that was derived from the
experience of the NERSC-3, NERSC-4, and NERSC-5 procurement teams. It presents an extremely
detailed view of the software requirements for a fully functional petaflop-scale system environment. It also
includes an assessment of how emerging near-petaflop systems (XT3, BG/L, Power SP) conform or fail to
conform to these requirements.

LBNL Software Roadmap to Plug and Play Petaflop/s 2

1. Software Needs for Petascale and Near Petascale Computing
In the sections below we characterize the potential deficiencies in system and application software that will
exist in the 2007 timeframe for the three high performance computing (HPC) architectures of interest to the
Office of Science. Section 1.1 summarizes the major issues. Section 1.2 looks at longer-term issues that
must be addressed before petaflop systems can reach a usable state.

1.1. Critical Issues for Near Petascale (circa 2007)

The following issues lie on the critical path for success of near-petaflops systems in the near term.

• Fault Tolerance: The emerging crop of near-petascale HPC systems contain an order of magnitude
more components than current-generation systems. Current software and hardware approaches are
inadequate to the task of managing and containing the failure modes that are likely to exist in such
complex systems. Fault tolerance is primarily limited by the fragile software environment. For
example, once an XT3 router chip fails, the torus cannot dynamically change routing; but more
importantly, the router, once fixed, cannot be returned to service without a full reboot.1 The BG/L
has similar issues. Hence, the system resources slowly decay until enough nodes are offline that
system managers shut down and reboot.

To address this issue, software reliability has to be improved. The majority of system-wide outages
at NERSC are due to software failures. A fundamental review of system software is needed with the
goal of reducing complexity and increasing reliability. Ways to proactively judge software
reliability will be critical to deciding where resources should be deployed. Attention to fault
tolerance in future software/hardware design must rise to a top priority in order to ensure the
success of systems that are 10x larger than today’s implementations.

• MPI and Support for Legacy Programming Models: Efficient MPI implementations0 are
necessary at increased size. The workloads at NERSC and other Office of Science labs show that
most codes can work effectively at the scale of 512 to 4096 processors using MPI. The systems in
2007 will have four times the number of CPUs. The current investment in science codes has to be
preserved, so MPI will have to operate effectively at the scale of 10,000–40,000 tasks. Support for
tools and optimizations of legacy programming models must continue even on petaflop-scale
systems. Even if all new HPC software development were to shift exclusively to advanced parallel
programming languages, it will still take more than a decade to shift the existing HPC software
infrastructure over to the new programming methods.

• Public Interfaces for Lightweight Communication: As the number of processors grows and
relative cost of the network increases, applications that are communication-intensive must be
optimized to make effective use of network resources. Hardware support such as remote direct
memory access (RDMA) offers opportunities to overlap communication with computation using
lightweight one-sided communication, but interfaces below MPI are often kept proprietary.
Hardware issues, such as lack of cache-coherence between network processors and compute
processors within a node, also interfere with the ability to use RDMA. The use of unmodified
commodity operating systems like Linux can also add overhead due to virtual memory management
and other services. Benchmarking efforts (e.g., HPC Challenge GUPS [giga updates per second]
benchmark) on the BlueGene/L machine have utilized non-public network interfaces. The
LBNL/UC Berkeley Unified Parallel C (UPC) group and the PNNL Aggregate Remote Memory
Copy Interface (ARMCI) group have demonstrated the value of RDMA-based benchmarks in both
microbenchmarks and application-level algorithms.2 Public lightweight communication interfaces

1 Note that the XT3 cannot do hot swaps either, so an entire rack needs to be powered down, losing 96 nodes.
2 See http://gasnet.cs.berkeley.edu/performance for microbenchmark numbers and “Optimizing Bandwidth Limited
Problems Using One-Sided Communication and Overlap,” C. Bell, D. Bonachea, R. Nishtala, K. Yelick, 20th
International Parallel and Distributed Processing Symposium (IPDPS), 2006.

LBNL Software Roadmap to Plug and Play Petaflop/s 3

are needed to optimize public domain implementations of MPI as well as global address space
models (below) in order to expose the best available network performance on each machine.

• Global Address Space Models: While we believe support for legacy programming models such as
MPI and OpenMP is important, efficient implementations of current-generation global address
space models like UPC, Co-Array Fortran (CAF), and Global Arrays (GA) provide a user-level
programming abstraction for the efficient one-sided communication described above. The language-
based models offer an advantage over libraries, because they expose parallel constructs to
automated optimization and reorganization by the compiler. Otherwise, the semantic meanings of
application program interface (API) calls (such as MPI) are opaque to the compiler’s optimizer and
therefore cannot be optimized in any fashion by the compiler. Global memory languages are poised
to play an important role now (in the near-petascale time range) for enabling effective use of
petaflop-scale systems. UPC compilers are available on every major HPC system architecture,
from PC clusters to the X1e, including prototypes for the XT3 and BG/L. LBNL is partnering with
Cray and Intrepid to provide optimized UPC support for the XT3; and IBM has an internal
research compiler for UPC on BG/L. CAF has a portable open-source compiler from Rice, and GA
is available from PNNL. These languages have nearly achieved the level of ubiquity necessary to
change the software ecosystem.

• Stable Parallel Filesystems: Current global, parallel filesystems are demonstrated to run
effectively at the scale of 2,000 clients. There are no other practical solutions in the near term aside
from GPFS and Lustre. Lustre has shown significant scaling and reliability issues. GPFS, while
showing good scaling, excellent performance, and excellent reliability for concurrencies up to 2,000
clients, is just now starting to move onto some of the near-petascale architectures. However, GPFS
performance and reliability remains relatively unexplored at concurrencies in excess of 2,000
clients. If the current implementations are just scaled to the number of compute nodes in the pre-
petaflop systems, it is likely that significant scaling issues will be encountered, even show-stopping
problems. Several solutions need to be explored, including redesign of the filesystems and
implementation of lightweight interfaces on compute nodes. The filesystem problems identified in
this section cannot be solved by the DOE Labs, even if the software is open-sourced. Any credible
solution requires close collaboration between the labs and the two primary vendors who have
developed scalable parallel I/O system technologies — collaboration that is supported by funding
to proactively target these issues.

• Numerical Libraries: Additional focus is required to ensure the scalability of parallel libraries.
Much of the current activity in tuning performance focuses on single processor performance, which
will continue to be important; but higher-level performance issues such as communication
performance, load imbalance, and synchronization overhead need to be addressed. The level of
sophistication required for parallel libraries on petascale systems will be dramatically larger than on
current lower-parallelism and flat interconnect topologies. Funding of advanced library
development that leads rather than lags the deployment of these systems will be essential to ensure
the systems are used effectively for scientific applications once they come online. HPC centers will
need to work with library and tool developers to assemble software testbeds to test new platforms,
document the results, and systematically accumulate a list of requirements and expertise on the
software and platforms where it runs. Library and tool developers should be among the community
of early pre-production users on the near-petascale systems, along with application-focused early
users, and should aggressively use this access to port and test their libraries and tools and to identify
problems at the level of the tools (such as numerical tool implementations, precision, etc.) and
applications codes. Early detection and resolution of problems through consistent validations can
make the science community more confident in petascale systems. Both users and library
developers have underscored the need for robust software testbeds that allow them to proactively
port their software to new platforms using smaller-scale early-release versions of candidate HPC
system hardware. A program that enables centers to purchase non-production early/prototype
hardware could play an important role in establishing advanced software testbeds to prepare our
software infrastructure for eventual full-scale implementations based on the same system
architecture.

LBNL Software Roadmap to Plug and Play Petaflop/s 4

• Debugging: There is no debugging solution for petascale systems. Totalview does not work for
users above 1,000 tasks, and only works on one near-HPC system beyond 1,000 nodes.
Furthermore, the Etnus cost model is extremely expensive at scale. Continuing in the current
direction for development for this software technology is untenable. In the short term, it will be
necessary to push vendors such as Etnus to extend the capabilities of Totalview to support larger-
scale platforms, but the costs may be impractical. Ultimately this issue requires renewed
exploration of alternative approaches to debugging at massive concurrency. Targeted funding is
required to reinvigorate the research pipeline in order to spawn new ideas in this area. This point is
explored in more depth in section 1.2 as a long-term issue.

• Checkpoint/Restart: Operationally, C/R provides many advantages that make large systems more
effective. By implementing C/R on both the Cray T3E and the IBM SP, NERSC increased its ability
to run the right job at the right time, allowing long-running jobs while still providing fair throughput
and reducing the impact of system shutdowns. C/R is feasible at scale on all the systems, but the
necessary software is only available for the IBM Power architecture at this time. Linux C/R,
developed through the DOE FastOS effort, may find its way into the XT3 and BG/L compute nodes
if and when they move from microkernels to stripped-down Linux kernels. Meiosys is another
possible implementation of C/R being considered by at least one vendor. While this move presents
an opportunity for the Linux C/R efforts, it will require software integration and support to ensure
production-quality services at this scale. It will require renewed support for vendor/laboratory
collaborations to bring this work to fruition.

The following problems are lower priority. They will greatly affect the usability and efficiency of the
system, but will not necessarily be show-stoppers to making systems work for production-quality science.
Systems without these functions merely waste DOE effort invested in these architectures.

• Changing Memory Balance: Memory is one of the most expensive and power-hungry components
of systems. For the past 15 years, systems have consistently hovered around a byte-per-flop (B/F)
ratio of 0.5 byte per peak flop delivered by the system, despite the lack of firm scientific grounding
for this ratio. Historically it has been associated with Amdahl’s heuristic design point for mainframes
that called for one byte of memory per instruction/sec3 processing performance. As systems move to
having thousands to tens of thousands of nodes, it may not be practical to continue the current
memory balances on future systems and still have enough funding to reach the computational goals. It
is unclear to what extent this design trade-off would impact the design of future applications and
numerical algorithms. The scientific computing community needs to develop the appropriate
framework to address this issue in a rational and scientific manner. The process can be informed by
the kind of in-depth analysis of algorithms being performed by groups such as Oliker’s benchmarking
team at LBNL; Worley, Dunigan and Vetter at ORNL; and the SciDAC PERC collaboration. These
efforts can provide the ultimate answer to this question if it is identified as an important issue, but
must be chartered explicitly to investigate the B/F ratio for the Office of Science workload.

• Efficient Job Migration and Torus Packing: In order to reduce performance variability on
architectures with a 3D torus topology, jobs must be given topologically contiguous sections of the
torus. As jobs are scheduled and retired, gaps develop in the torus that must be removed by migrating
running jobs to repack the torus. Such migrations require many of the same capabilities as OS-
initiated checkpoint/restart, but the job state need not be written to and from disk. Integrating efficient
job migration and job packing algorithms with the batch subsystem will be important for efficient
utilization of these system architectures. NERSC implemented such capabilities for the T3E/900
system (mcurie). Recreating this capability requires much of the C/R capabilities as a minimum
requirement, and must be complemented by an open/modular resource management system that can
be modified to direct the job suspension and process migration facilities to effect job migration in
response to current job scheduling conditions. The XT3 will present a problem in this regard due to
lack of explicit control of job layout in the current system software implementation.

3 This is a non-floating-point measure.

LBNL Software Roadmap to Plug and Play Petaflop/s 5

• Job Mapping: BG/L and the XT3 require very complex job mappings for anything except the
simplest of problems.4 Currently users have little information to select job mappings other than the
canonical mapping. There are few tools to assist with selecting a better mapping, much less
automatically generating map files for the user (who is left to write scripts to generate the map files,
if possible). Currently available monitoring tools do not provide useful advice on how to improve the
job mapping or are not practical for full-scale utilization. Funding to develop lightweight, non-
invasive systems for collecting communication and performance data from the jobs while they run at
production scale will be essential to make more efficient use of these resources. Such performance
monitoring frameworks must be non-invasive enough that they can be used for all jobs run on the
system rather than as an offline performance optimization/tuning step (a key example is described in
section 5 of this document). Combining these capabilities with the facilities to re-pack jobs on the
interconnection network will greatly improve resource utilization efficiency.

• Parallel I/O: MPI I/O may be insufficient at this scale unless POSIX5 semantics can be relaxed.
Some form of asynchronous I/O or other support for relaxed POSIX compliance will be critical to
scalable I/O performance. This capability must be exposed efficiently via mainstream I/O libraries
like Parallel NetCDF or parallelHDF5. This is not a show-stopper because users will continue to
follow current practice of writing one file per processor. The result of such user behavior is
overblown storage system performance requirements (such as the 30k file creates/sec required by
DARPA HPCS) that will otherwise increase costs and reduce the efficiency of archival storage
systems such as HPSS. DOE labs can help by continuing R&D of parallel file formats and libraries
such as MPI-I/O, more efficient parallel-I/O alternatives such as server-directed I/O, expanding the
effectiveness and portability of parallel global filesystems that allow parallel writes to single files in
an efficient manner, and refining a strategy for relaxed POSIX I/O. The latter requires close
collaboration with industry and some organized effort to promote standardization of the approach
across multiple platforms. Refinements in the lower-level parallel I/O strategy must be complemented
by comparable funding for the incorporation of those advances into high-level file storage
organization such as pHDF5 and Parallel NetCDF.

• Visualization and Data Analysis Infrastructure: The ASC VIEWS program has provided a good
set of baseline tools to attack this problem, such as LLNL VisIT. However, scientists require constant
evolution in these baseline tools, tailoring their capabilities to meet the specialized visualization and
data analysis requirements of their scientific domain. Tool development for data analysis and
visualization is a continuous optimization process, requiring close collaboration with the domain
scientists. VisIT offers a substrate to build upon that meets baseline needs, but such tools do not fix
or extend themselves. Failure to consider the requirements of data analysis (both hardware and
software resources) together with the large-scale system procurement will render any such system
ineffective. DOE needs to preserve the investment in data analysis software infrastructure by
continuing to fund collaborations between the providers of tools such as VisIT and Paraview, and the
application stakeholders.

1.2. Critical Software Issues for Petascale (circa 2010)

1.2.1. Fault Tolerance

The emerging set of near-petascale systems present a two-orders-of-magnitude leap in scale over typical
systems today, in terms of hardware components (total number of disks, processors, and DRAM sticks),

4Almasi, Bhanot, Gara, Gupta, Sexton, Walkup, Bulatov, Cook, de Supinski, Glosli, Grennough, Gygi, Kubota, Louis,
Spelce, Streitz, Williams, Yates, Archer, Moreira, Rendelman, “Scaling physics and material science applications on a
massively parallel Blue Gene/L system,” Proceedings of the 19th Annual International Conference on Supercomputing,
ICS 2005, Cambridge, Massachusetts, June 20–22, 2005, pp. 246–252.
5 Portable Operating System Interface for UNIX: a set of standards from IEEE and ISO that define how programs and
operating systems interface with each other.

LBNL Software Roadmap to Plug and Play Petaflop/s 6

which is causing a critical gap to open up in fault management of these systems. Most of the systems have
hardware designs that include many features that improve fault tolerance, but critical failure modes persist.
Currently, systems software components for large-scale machines remain largely independent in their fault
awareness and notification strategies. Software implementations remain fragile and do not support many of
the hardware RAS (Reliability Availability Serviceability) features, so operationally, there is limited
benefit for the hardware features. Faults can arise not just from the hardware but also from the OS,
middleware, and application levels. Failures typically get reported using rudimentary error conditions such
as “job failed,” that provide little indication of the root cause of the failure. Given the overwhelming
complexity of emerging petascale HPC applications, such opaque failure modes may well render the
system unusable. Moreover, the multiple layers of software between application and computer have little to
no opportunity to report, avoid, or correct the issue.

As mentioned above, the work in hardware fault tolerance is being limited by the fragile software. For
example, once an XT3 router chip fails, the torus cannot dynamically change routing; but more
importantly, the router, once fixed, cannot be returned to service without a full reboot.6 The BG/L has
similar issues. Hence, the system resources slowly decay until enough nodes are offline that system
managers shut down and reboot.

To address this, software reliability has to be improved. The majority of system-wide outages at NERSC
are due to software failures. A fundamental review of system software is needed with the goal of reducing
complexity and increasing reliability. Ways to proactively judge software reliability will be critical to
deciding where resources should be deployed.

Checkpoint/restart is a primary approach for fault-tolerance. It helps preserve application work and also
helps system effectiveness when system shutdowns are needed. System-wide checkpoint becomes
increasingly important because any solution that attempts to improve on fault-tolerance over C/R is likely
to creep into the programming model. For instance, even in the most likely case of moving to application-
initiated C/R, there is a need to annotate the minimum amount of state that must be preserved. Entire
system C/R is feasible at scale.

However, the time to do a checkpoint is dominated by the size of memory and the I/O bandwidth. Since
bandwidth increases more slowly than memory capacity, the time for checkpoints will continue to increase.
Hence, it will become important to have incremental/journaled checkpoints. This is analogous to full and
incremental checkpoints. You only do a full checkpoint for an application occasionally, and you do
incremental checkpoints that reduce the amount of I/O needed. Restart would be longer, having to read in
both the full and incremental checkpoints, but that may be more effective.

It is necessary for the batch system to handle the restart, but it is not possible to explain to a batch system in
a concise manner where to locate the restart files and how to invoke the application to perform the restart
unless there are some common guidelines to enforce uniformity. If you expect one processor failure every
10 minutes, it is a non-solution if the user must intervene in the restart process. Uniform software
frameworks must be developed to support uniform application-level C/R if this approach is ever to be
workable.

The problems with extending C/R to future systems suggest a need to build an infrastructure that enables
systems to adapt to faults in a holistic manner. Such a system would provide common uniform event
handling and notification mechanisms for fault-aware libraries and middleware. Applications would need to
interface with these capabilities in a more seamless manner.

Attention to fault tolerance in future software/hardware design must rise to a top priority in order to ensure
the success of systems that are 10x larger than today’s implementations. The focus should be on detecting
deviant behavior in addition to catastrophic failure. Whereas current system software error detection
mechanisms remain largely independent of the error handling at system and hardware level, a more
integrated approach to the detection, propagation, notification, recovery, and even prediction of errors
conditions is necessary. Given the realities of component failure rates, applications and underlying system
services will increasingly need to adapt to fault conditions and take defensive action to recover from faults

6 Note that the XT3 cannot do hot swaps either, so an entire rack needs to be powered down, losing 96 nodes.

LBNL Software Roadmap to Plug and Play Petaflop/s 7

rather than die with a cryptic error when any fault is detected. Methods like statistical learning theory
should be explored to provide very early warning indicators from user behavior and application results.

More work on alternatives to C/R needs to be launched in the research community. Developing methods to
proactively measure and predict reliability, particularly for software, is another research area. A holistic
view of reliability demands that fault detection, notification, and recovery mechanisms be integrated across
both the OS and application domain in a uniform manner in order to enable a more holistic and
comprehensive approach to fault resilience.

1.2.2. Application Coupling and Multiphysics Applications

Petascale computing platforms enable physical processes to be simulated with much higher fidelity. The
structure of such computations will likely increase the number of applications requiring complex couplers
to join simulation components that employ incompatible domain decompositions or underlying numerical
algorithms to simulate a broader array of physical processes. There are many aspects of this problem that
are now of interest. As the coupling of models becomes more complex, it becomes more prohibitive to
simply combine two different codes into one; but rather the trend has been to develop software paradigms
to make them interoperate (like MCT, DCT, CCA or other more specific software frameworks). However,
the execution control part of the problem has not been optimally addressed by vendors or the middleware,
given the complexity of the problem. So, we need to develop more robust versions of existing coupling
toolkits and ways that one can control the launching of multi-executables that need to exchange model
variables, fields, or data online, ensuring that these coupled models run scalably and reliably on massively
concurrent systems. The capabilities of such systems are likely to make multi-physics couplers more
common in the future.

1.2.3. Analytics, Visualization, and Data Management

As we move towards larger-scale systems, the issue of data management (data storage and
movement to different data storage resources) will become intimately entwined with every aspect of
the data analysis and visualization process. There is a tendency to separate the concerns of data
analysis from those of the core computing system, but this approach cannot be sustained on the
largest-scale systems. The ASC program took pains to ensure that visualization and analysis
requirements were intimately linked to each new system by suggesting the data analysis resources
be provisioned as at least 10% of the scale of the primary computing system. Anecdotal evidence
from the scientists served by the ASC program indicates this metric has served them well. The ASC
metric for scaling data analysis resources as a fraction of the size of the primary computing platform
should be examined to determine if the ratio makes sense for petaflop-scale systems. Likewise,
investments in advanced and scalable visualization technology must be preserved through funding
of joint development efforts between science groups and visualization technology providers.
Otherwise, the current rewards system of these respective groups makes the natural emergence of
effective data analysis solutions unlikely.

1.2.4. Massively Parallel Programming Models

Most applications remain unprepared for the level of concurrency exposed in petascale systems and their
precursors such as the XT3 and BG/L. Advanced programming languages will likely play an essential role
in exposing/expressing enough concurrency to take advantage of the myriad of processors. The path to
scalability is increasing the number of user-visible threads, because hardware techniques such as pipelining
and instruction level parallelism have reached their practical limits.

Some significant issues are:

• Load Imbalance: Problems with any degree of irregularity or load imbalance such as
unstructured grids (e.g., UMT2K), block-structured AMR (e.g., Chombo and SAMRAI), and
sparse linear algebra (e.g., SuperLU, MUMPS) exhibit lower scalability with current methods.
Application-level load imbalance will be exacerbated on petascale systems, as all processes must
wait for the slowest to arrive at synchronization points, and the dynamic load balancing required

LBNL Software Roadmap to Plug and Play Petaflop/s 8

for some applications require asynchronous background communication or other techniques to
hide their cost. Advanced dynamic partitioning software such as Zoltan and graph partitioners
such as Metis can play a role in a software strategy to detect and react to load imbalance

• Small Messages: Increasing the number of processors in a system, especially in an environment
with small memory per processor, will lead to smaller messages. The 3D FFT is an example where
message sizes get smaller (send nprocs messages to each processor in 1/nprocs) as concurrency
scales up. To do better at spreading communication over a longer period of time to reduce
bisection bandwidth requirements, one must employ even smaller messages. The overhead
associated with sending each message has a significant impact for small messages that are required
to spread out the communication costs, as described in the Chen/Iancu/Yelick paper on fine-
grained communication optimizations for UPC.7 Current best practice is to aggregate messages
into larger buffers, but that approach increases software complexity and cannot be extrapolated to
systems with such massive concurrency. Hardware that provides fast communication with low
CPU overhead will allow for more effective use of networking hardware. In addition, these
facilities must be exposed to user-level software, ideally in a common communication interface.

• Topology: Codes with large global communication, like 3D FFT and particle-in-cell methods,
require extra attention to communication locality and the topology of the underlying
interconnection network. Experience with BG/L has already highlighted the important of topology
optimizing communication performance, and this is likely to become more significant as machines
scale. MPI libraries need to optimize for topology, and machines should expose information to
allow application programmers to optimize as well.

• Multithreading: The primary path to exploiting hardware threading currently involves mixed-
mode OpenMP + MPI programming (OpenMP to exploit threading on each node and MPI to span
the distributed memory domains). However, OpenMP offers a rather limited approach to
expressing threading concepts that are completely disjoint from the considerations of the message-
passing model. Few programmers are willing to take the additional step of employing two-level
parallelism in this manner. Languages that offer a more natural/readable approach to exposing
parallelism are required. Vendors can implement Unified Parallel C (UPC) and Co-Array Fortran
(CAF) in this time frame, but they offer only an interim solution to exposing the necessary degree
of parallelism required to make petaflop-scale systems even marginally useable.

Recommendation: Continued development of advanced programming models in close collaboration with
vendors and application scientists is essential to ensure that the hardware/software architecture for
messaging on future systems will meet the needs of advanced programming models, and that the
programming models meet the needs of the users. Cross-agency and vendor coordination is also essential
to ensure ubiquity of emerging programming models.

1.2.5. Libraries

Efficient libraries are essential for large-scale systems. There is too much software complexity for each
individual application group to take on alone (unless their application is exceedingly simple). The
community must leverage the numerical algorithm development and performance tuning work that goes in
to library solutions.

The increasing sophistication of computer models together with the complexity of algorithms and computer
architectures greatly inhibits progress towards optimized version of an application. In addition, a
development team may already be faced with software intricacies that cannot be undertaken by the team
alone. Together, all these issues may be even more challenging on large-scale systems.

Libraries can provide a convenient way for incorporating state-of-the-art computational technology into
development efforts, with the additional benefit of alleviating many aspects of the development process and
enabling testing of different techniques or implementations.

7 Wei-Yu Chen, Costin Iancu, Katherine A. Yelick, “Communication Optimizations for Fine-Grained UPC
Applications,” IEEE PACT 2005: 267–278.

LBNL Software Roadmap to Plug and Play Petaflop/s 9

While some users have been able to exploit serial libraries, e.g., calling non-parallel libraries such as FFTW
within parallel applications, the degree of sophistication required to achieve scalable performance on mesh
interconnects (such as the torus networks on BG/L and the XT3) far exceeds current requirements. This
will necessitate more focus on the largest scale.

While library autotuning might be viable in some cases, overall it is likely to be impractical on large-scale
systems since it may require increased validation and testing to make sure the libraries are functioning
properly. The search space for autotuning is greatly expanded if parallelism is admitted into the search
space on the same level with scalar optimizations. This may require a hierarchical approach to autotuning
of parallel applications or it may require limiting the range of autotuning.

To identify the main libraries used in simulation codes, provide the resources for early porting of such
libraries to emerging large-scale architectures; identify eventual bottlenecks in the libraries and
recommend alternative solutions.

We reiterate the importance of providing targeted funding for massively concurrent system libraries and
programming abstractions. The development of such libraries must anticipate the arrival of the systems
(using smaller-scale proxies or early prototypes to assist in development) rather than spin up after such
systems have been delivered. The lead time required for software development is considerable, so a close
interaction between the research, evaluation, and prototype program and developers of advanced software
technology is essential for the success of future systems.

1.2.6. Debugging

Although some tools like Umpire8 and MARMOT9 have been developed to detect faulty use of MPI
functionalities, it is fair to state that there is no practical debugging solution for problems scaled beyond
thousands of processors. Although users do want to employ debugging functionalities on more than 512
processors, existing solutions such as Totalview are inadequate. To the best of our knowledge, there is
currently is no effort underway to replace Totalview and there is little motivation for Etnus to invent and
test for higher scales. At the same time, there are no responsive solutions in the pipeline from the research
community. An alternative approach to debugging large-scale codes may be higher-level toolkits that go
beyond stepping through code with interactive debuggers, print statements, and time stamps that are
cumbersome to look at when running on hundreds of processors. There is a need for tools that can replicate
scenarios and program failures with user-friendly interfaces.

1.2.7. Operating System

OS interference is a well documented problem on systems such as ASCI White and NERSC-3. The
microkernel approach on the XT3 and BG/L mitigates OS interference problems. However, XT3 and
possibly BG/L will be moving to stripped-down Linux kernels. This has ramifications on reliability/uptime
and possibly OS interference on large-scale systems, and requires additional planning and attention as we
lead up to production system deployment. OS interference is potentially very dangerous, with show-
stopping consequences if we do not proceed with deliberate caution and preparation.

While considered solid for desktop systems, the reliability of Linux on a massive scale remains
questionable. Furthermore, the complex web of hardware/driver dependencies makes any OS upgrade or
modification challenging for systems that use a Linux or UNIX base. The planned move of the XT3 and
BG/L compute nodes from microkernels to Linux implementations presents a high degree of risk,
particularly if the Linux community refuses (as they have done many times in the past) to adopt extensions
that might improve the reliability and effectiveness of Linux on large-scale systems.

8 J. S. Vetter and B. R. de Supinski, “Dynamic Software Testing of MPI Applications with Umpire,” Proc. SC2000:
High Performance Networking and Computing Conf. (electronic publication), ACM/IEEE, 2000.
9 B. Krammer, M. S. Muller and M. M. Resch, “Runtime Checking of MPI Applications with MARMOT,” ParCo
2005, minisymposium on Tools Support for Parallel Programming, Malaga, Spain, Sep. 12–16, 2005.

LBNL Software Roadmap to Plug and Play Petaflop/s 10

1.2.8. Profiling and Performance Analysis

There are tools that have been used successfully to analyze performance data on thousands of processors. In
particular, TAU has been used to generate and analyze profiling information of a CFD code on 16 K nodes
on LLNL’s BG/L. That same data was later replicated four times in order to simulate the profiling of the
application on 64 K processors and test the scalability of TAU. The last version of Paraprof, TAU’s
visualizer, offers 3D view functionalities (such as triangle mesh plot and scatter plot) that can help users
look into performance data obtained on a large number of processors.

Another solution for performance analysis is IPM (Integrated Performance Monitoring), which is discussed
in detail in section 5. The primary contribution of IPM is that it presents a lightweight approach to
application monitoring. The overheads (< 3% typically) are low enough to enable continuous monitoring
and data collection for a system workload. This has enormous benefits for better characterizing the
workload at a given center in order to feed back into the design requirements for future systems.

It remains to be investigated, however, how tools such as these behave on a wide set of large applications,
the overhead resulting from their use, their performance, and their capability in helping the user understand
enormous collections of profiling and tracing data.

1.2.9. Parallel I/O

Parallel I/O for petascale systems raises several software issues:

• Bandwidth: In hardware, bandwidth is a factor of the number of I/O servers, the number and
capabilities of the controllers, the number of storage units, and the number of connections from
disk devices. Bandwidth also depends on the ability of the software to manage the control of
operations. The software control is the primary area to attack, since the other constraints are a
matter of buying more hardware.

• Reliability of the Underlying Storage Medium: High performance disk systems have a price
point well above commodity disks. Much of the cost is in the controller, which has embedded
software. Trying to use disks, such as SCSI, that have lower duty cycle design points raises
reliability issues. Current filesystem software stacks will be unable to cope with the move to less
reliable storage devices, so fault recovery and resilience pathways must be reexamined in the light
of this impending hardware constraint.

• Metadata Performance: Standard operations such as simply running a cron job that purges old
files (clean scratch) will be impractical on a filesystem with hundreds of millions of files.

• File Create Performance: HPCS 30 K file creates/sec is considered unreasonable, but may be a
practical requirement for these systems unless concurrent file I/O performance problems are
addressed.

Facility-Wide File Systems (FWFS)10 provide consolidated storage for online user data, replacing
traditional system-local parallel filesystems for home directories, scratch storage, and project storage.
While an FWFS is external to all computational systems, it is mounted natively and at high performance.
FWFS grow and evolve over time, serving several generations of computational systems.

The benefits of FWFS to scientific productivity are manifold. By providing a single unified namespace,
FWFS will make it easier for users to manage their data across multiple systems. Users will no longer need
to keep track of multiple copies of programs and data; they will no longer need to copy data between
NERSC systems for pre- and post-processing. Storage utilization will become more efficient through
decreased fragmentation. Computational resource utilization will become more efficient as users can more
easily run jobs on an appropriate resource. Storage allocations (quotas) will become larger, because they
will no longer be fragmented among several systems. FWFS will also provide improved methods of
backing up user data that can mitigate disturbance to users when block backups are run.

10 In FY2005, NERSC began deployment of a Facility-Wide File System (FWFS)

LBNL Software Roadmap to Plug and Play Petaflop/s 11

Anticipated developments in filesystem technology will provide further benefits. It is expected that FWFS
will provide Hierarchical Storage Management (HSM) functionality, in which data can be automatically
migrated to and retrieved from tertiary storage. This will further improve scientific productivity by enabling
the user perception of extremely large online disk (very large quotas) and making it unnecessary for users
to manually transfer data to and from HPSS. Other possible technology enhancements include enhanced
security, wide area access, and tighter integration with grid technologies.

GPFS is the leading candidate because it has performance, scalability, reliability, better security, can be
geographically distributed, and is interfaced to two different archive systems. Unfortunately, GPFS is not
ported to all potential petascale systems. Lustre is an evolving candidate that currently has no plans for
archive integration and presents security concerns and reliability issues.

In the petascale domain, there will be tens to hundreds of terabytes of data files. Moving them between
systems in a facility will be difficult and time consuming. Indeed, some project teams currently devote 0.5
to 1 FTE just to move files to the right place. Hence it is essential that petascale vendors support
filesystems that integrate well, and at high performance, into facility-wide filesystems. However, it is
important to encourage some level of competition in this area as well, so DOE should fund work in at least
two global, parallel filesystems.

Alternatives to MPI/IO such as Server Directed I/O that were developed for the database community
should be reconsidered. These approaches were more effective than the imperative approach of MPI-I/O
because the data was committed to disk using fences that offer a greater opportunities to overlap
computation with communication. It is unfortunate that the techniques were overlooked by the HPC
community.

1.2.10. Network I/O

Computational switches are based on very large frame (packet) sizes, typically 64 KB, and suffer
performance degradation at lower sizes. Local-area networks based on Gigabit Ethernet can run up to 9 KB
jumbo frames reliably for onsite mass storage and backups. The 9 KB frame size increases performance
compared to standard Ethernet by reducing overhead and CPU load; but compared to 64 KB frames, it has
lower performance and higher latency than computational switches. Wide-area networks typically are
restricted to 1,500-byte frames because of the need to support millions of simultaneous connections, even
though the main protocols — 10 Gigabit Ethernet, SONET, and ATM — will pass frames up to 9 KB.

This mismatch in maximum transfer unit (MTU) sizes, and more importantly the performance degradation
that is associated with running small MTUs, makes it difficult to effectively integrate a massively parallel
computer system into any networked environment. Furthermore, internal interconnects do not run IP but
instead use switch-specific protocols such as LAPI and Portals. The two major approaches used to date
have been to add an external interface into each node or to turn one or more computational nodes into
gateway routers and have external traffic flow across the internal switch to these gateways.

Both of these approaches have major weaknesses. Petascale computing will require thousands to tens of
thousands of nodes.11 Adding an external gigabit interface to every compute node for external connectivity
to data storage systems and other computational resources is not practical, nor will it allow single stream
performance to increase above current levels, even though this has the best chance for meeting large
aggregate bandwidth requirements. Using a compute node that has a connection to the internal switch
fabric as well as multiple bonded Gigabit Ethernet interfaces or 10 Gb/s Ethernet as a router is logistically
easier and potentially has better single stream performance, but aggregate performance will suffer,
especially coupled with small MTU traffic on the computational switch. Further, not all systems have nodes
that can drive 10 Gigabits at near optimal rates. Also, a compute node that has to run packets through its IP
stack to divide the traffic into packets, generate packet headers, and perform flow and congestion control

11 C. William McCurdy, Rick Stevens, Horst Simon, et al., “Creating Science-Driven Computer Architecture: A New
Path to Scientific Leadership,” Lawrence Berkeley National Laboratory report LBNL/PUB-5483 (2002),
http://www.nersc.gov/news/ArchDevProposal.5.01.pdf.

LBNL Software Roadmap to Plug and Play Petaflop/s 12

will never be able to keep up with the fastest switches and routers that just store and forward with all
decisions in application-specific integrated circuit (ASIC).

One possible solution would be a Layer-7 router with a computational switch interface that could do the
bridging, MTU repackaging, and load balancing. This would be directly connected onto the vendor’s
internal interconnect. No potential petascale vendor has this in plan. A more workable solution would be to
modify a compute node to act like a high performance router. Most of the hardware components for
modifying a compute node already exist or would be simple to create. A computational switch, such as a
Federation SMA3 adapter, and a 10 Gigabit Ethernet card, both with sufficient field-programmable gate
array (FPGA) space to offload the IP protocol, would limit the compute nodes duties to setting up remote
direct memory access (RDMA) between the two interfaces. Frame fragmentation and coalescing are often
done through TCP proxies but should be programmable in a reasonable amount of FPGA space, thus
reducing the adverse impact of widely disparate MTUs.

1.2.11. Transport Protocols

TCP’s congestion control algorithm aims to fully utilize the network path yet be fair to other traffic. There
are two types of losses in the network: random and congestion. If network traffic arrives at a router or
network interface and there is not enough capacity left to buffer the packet, then the packet is discarded
(congestion loss). In TCP, the receiver acknowledges data as it is received. When a sender receives three
duplicate acknowledgements, it assumes that data has been lost, cuts its sending rate in half, and retransmits
the data just above the duplicate acknowledgement. It then increases the sending rate by one each round-
trip time until the next loss, and the cycle repeats. This algorithm is called additive increase, multiplicative
decrease (AIMD). TCP also includes a slow start algorithm, which is used at the beginning of a TCP
connection to double the sending rate each round-trip time until the first loss is detected. TCP uses a
congestion window to track the sending rate that is allowed. If the buffer size for sockets is not sized
appropriately for the network connection, the congestion window might be artificially limited or the
receiver might be overrun. Ideally the buffer size is continually tuned to the optimal size. The Net100
project has created a workaround daemon to perform this dynamic tuning12.

Network gateway nodes are often the limiting factor in network performance from large systems. It is
tempting to assume that the host throughput to and from the network is simply the slower of the I/O bus
speed or the memory bus speed, but the reality is more complex. The real throughput that can be achieved
in transferring data from the user memory on the machine to the network interface card is defined by
adding (1) the time to copy data from user memory to the kernel memory across the memory bus and (2)
the time to copy from the kernel memory to the network interface card. Typically it takes two memory bus
cycles to copy data from the user memory to the kernel memory, and one I/O bus cycle to copy from the
kernel memory to the network interface card. The number of memory bus cycles required to transfer a word
from the kernel memory to the I/O bus is determined by dividing the memory bus speed by the I/O bus
speed. So, the typical throughput between the user memory and the network interface of a typical PC is
defined by the following equation:

IOBusClock
kMemoryCloc

 2

widthMemoryBand Throughput
+

= (1)

The analysis can be found in [13] but the bottom line is that most x86 systems with the fastest available
memory and PCI bus are not able to provide enough I/O power to drive 10 Gb NIC at full speed. PCI
Express systems will do better, but will still be insufficient in the petascale domain.

12 T. Dunigan, M. Mathis and B. Tierney, “A TCP Tuning Daemon,” Proceedings of SC2002, November 2002;
http://www-didc.lbl.gov/papers/net100.sc02.final.pdf.
13 William Kramer, Deborah A Agarwal, Arie Shoshani, Brent Draney, Guojin Jin, Gregory Butler and John Hules,
“Deep Scientific Computing Requires Deep Data,” IBM Journal on Research and Development, Volume 48, Number 2,
March 2004.

LBNL Software Roadmap to Plug and Play Petaflop/s 13

Several mechanisms have been created to allow applications requiring high bandwidth to have priority
access to the bandwidth. The most aggressive of these is to create a dedicated path for the traffic by
reserving a dedicated link/circuit/channel. The best-known mechanisms for this include virtual circuits and
RSVP. Another mechanism is to mark the traffic as priority; then each router in the path expedites the
traffic. The standard method for this is to use a bandwidth broker to arbitrate the access to the bandwidth on
a pair-wise basis. If the intervening routers agree to the priority path, then the packets get marked as
priority as they enter the network, and each router in the path forward gives the packets preference over all
other traffic. An alternative approach that has been proposed is use of priority ratings on traffic or reserving
virtual circuits. Although prioritizing traffic has received a lot of attention, it has generally been
impractical. It is likely that traffic requiring guaranteed bandwidth will need to reserve virtual circuits
through the network. This does not, however, remove the need to find a transport protocol that can
effectively make use of the dedicated bandwidth.

These mechanisms are not supported on the software roadmaps of petascale systems.

LBNL Software Roadmap to Plug and Play Petaflop/s 14

2. What Are the Strengths and Weaknesses of the Vendors and
of Existing Vendor Solutions?

2.1. Cray XT3

Issue Mitigation
The XT3 interconnect shows quite high latency
differences for very large installations. This is a
potential problem for parallel applications writers.

It is not clear how much can be done with software
or communication libraries. It would seem ANL,
with their experience in MPI, might be best suited to
address this. NERSC/LBNL are best posed to offer
programming and algorithm expertise to science
projects.

The XT3 interconnect is quite fragile, with little
ability for software recovery. Once a node/router
goes out of service, it is not possible to return to
service without a full system boot.

This takes low-level system and interconnect
software work to improve. LBNL and ANL have
expertise in these areas

Lustre may have issues with stability, performance,
scaling, and interoperability as compared with other
high performance global parallel filesystem.

NERSC/LBNL have several years of experience
with Lustre, GPFS, and other filesystems due to our
Global Unified Parallel File System (GUPFS) and
NERSC Global Filesystem (NGF) efforts. While
Lustre will be made reliable eventually, GPFS
appears to be a very feasible option and Cray is
open to it.

Cray lags behind in compliance for the latest
Fortran standard.

This is more complicated now that Pathscale has
been purchased.

Interconnect latency lags behind commodity
interconnect in this timeframe. While this is
software, it is very low-level software.

It is not clear how much can be done with software
or communication libraries. It would seem ANL,
with their experience in MPI, might be best suited to
address this. NERSC/LBNL are best posed to offer
programming and algorithm expertise to science
projects. LBNL’s Berkeley Institute for
Performance Studies (BIPS) effort would be crucial
to understanding the limitations.

Memory available per MPI process is low compared
with other architectures. This may cause some
applications to have to be redone, and certainly puts
pressure on any system-level efforts.

This is basically a programming and testing effort.

The successor to Catamount, Compute Node Linux
(CNL), has an almost non-existent roadmap at this
time. In particular, there are no requirements
regarding memory and cpu cycle consumption.

Cray has only general goals and plans for CNL.
LBNL, ANL, and ORNL all have expertise that
could help with implementing CNL. NERSC has
expertise in identifying and dealing with memory
and CPU intrusion of operating systems.

Basic user and job resource management controls
are very limited (quota, resource limits, etc.).
Advanced workload management features such as
checkpoint/restart, job migration, and preemption
have no clear roadmap.

NERSC implemented the first highly parallel
checkpoint/restart, and was the first site to use it on
IBM systems at scale, as well as implementing
excellent workload management methods. This
experience, combined with LBNL’s Berkeley Lab
C/R (Hargrove and Duell), makes LBNL/NERSC
the best place to address this.

LBNL Software Roadmap to Plug and Play Petaflop/s 15

Tools for large-scale debugging, analyzing, and
tuning are lacking. E.g., Totalview only scales to
512 CPUs at this time and will at best be at 1024 in
the 2007 timeframe, ~5–10% of the maximum job
size.

Large-scale debugging has to be rethought from
scratch. Totalview is a very expensive monopoly
that is not really effective. ANL, ORNL, and LBNL
have expertise here

2.2. IBM Blue Gene

Note: BG/L is the system that NERSC/LBNL knows the least about. There are probably a lot more issues
than listed here.

Issue Mitigation
With a choice of NPFS, Lustre, and GPFS, there is a
variety of high performance global parallel
filesystems available. The very large number of
processors could cause scaling issues.

NERSC/LBNL has several years of experience with
Lustre, GPFS, and other filesystems due to our
GUPFS and NGF effort.

Specialized chip architecture requires compiler
tuning not relevant to mainstream products.

ANL and ORNL have expertise here

Workload management software immature for
providing high utilization and throughput under a
workload with a wide range of concurrencies.

NERSC implemented the first highly parallel
checkpoint/restart, and was the first site to use it on
IBM systems at scale, as well as implementing
excellent workload management methods. This
experience, combined with LBNL’s Berkeley Lab
C/R (Hargrove and Duell), makes LBNL/NERSC
the best place to address this.

Memory available per MPI process is low compared
with other architectures.

This is basically a programming and testing effort.

Tools for large scale debugging, analyzing, and
tuning are lacking.

Large-scale debugging has to be rethought from
scratch. Totalview is a very expensive monopoly
that is not really effective. ANL, ORNL, and LBNL
have expertise here.

2.3. IBM Power

Issue Mitigation
Power5 architecture has high power, cooling, and
space requirements compared with other systems.
Power6 will probably be an improvement, but will
likely lag behind other systems.

This is hardware design and not really addressable
in this time frame. ORNL and LBNL have expertise
designing advanced buildings for computers.

IBM Federation interconnect will be at the end of its
lifetime in this timeframe. Its fat-tree topology also
has higher costs than networks with a 3D torus
connectivity. The latency of the Federation
interconnect will not be any better than commodity
in this timeframe.

Not much to do here.

AIX is known to be a heavyweight operating system
both in terms of memory and cpu cycles consumed.

ANL’s OS experience might help to implement a
lightweight AIX.

LBNL Software Roadmap to Plug and Play Petaflop/s 16

Intrinsic barriers to application scaling exist in the
AIX operating system, such as system daemons,
lack of synchronization in OS images.

LBNL, ANL, and ORNL all have expertise that
could help with implementing CNL. NERSC has
expertise in identifying and dealing with memory
and CPU intrusion of operating systems.

Tools for large scale debugging, analyzing and
tuning are lacking.

Large scale debugging has to be rethought from
scratch. Totalview is a very expensive monopoly
that is not really effective. ANL, ORNL, and LBNL
have expertise here

2.4. General Issues

Issue Mitigation

System administration and resource management. NERSC and ORNL have experience in making
large systems work with effective system
administration.

High performance MPI collective operations and
support for overlapped computation and
communication activity.

ANL would be a national place to work on this.
LBNL’s BIPS also has expertise that could be
applied.

Security: None of the systems provide anything new
in security beyond standard Linux/UNIX. AIX has
some advanced features, but some are not
compatible with open standards (e.g., OpenLDAP).
BG/L and the XT3 have given little effort to
security.

LBNL and NERSC have expertise in both providing
open access to systems without advanced security
features, as well as working to implement new
features.

Advanced languages: Cray and IBM are interested
in UPC but not willing to completely support it.

LBNL has extensive expertise in UPC.

LBNL Software Roadmap to Plug and Play Petaflop/s 17

3. What Are the Local Strengths at the Labs?

3.1. LBNL Strengths

3.1.1. Large-Scale System Management

Nick Cardo, Tina Butler, Jim Craw, Bill Kramer: NERSC has demonstrated the ability manage large-scale
systems to achieve a variety of goals, from high utilization to high levels of time going to large jobs.
NERSC has a history of fielding early production systems and making them highly effective for science.

3.1.2. Large-Scale Data Management

Greg Butler, Brent Draney, Cary Whitney, Will Baird, Damian Hazen, Howard Walter: NERSC is one of
the development sites for HPSS and operates one of the largest data repositories. NERSC is also the first
site to implement a facility-wide global filesystem across multiple architectures. This is complemented by
NERSC’s ability for end-to-end network tuning.

3.1.3. Large-Scale Application Improvement

Jonathan Carter, David Skinner, Richard Gerber, Francesca Verdier: NERSC’s expertise in scalability and
optimization has enabled a number of applications to reach and exceed the 1,000-processor scale.

3.1.4. Languages

Kathy Yelick, Parry Husbands, Costin Iancu: UPC and Titanium language development. Evaluation of
advanced HPC languages (with Rusty Lusk at ANL) as part of the High Performance Languages effort.

3.1.5. Analytics and Data Management

Wes Bethel: Leads visualization and analytics for NERSC and LBNL.

Arie Shoshani: Leads the SciDAC Scientific Data Management Center and focuses on data management
for the scientific community running on the largest-scale computing systems.

3.1.6. Interconnect Architecture and Software

Jason Duell, Michael Welcome, Parry Husbands, etc.: GASNet. Experience with developing efficient
runtime layers for single-sided messaging for UPC on a wide array of systems. Development of very
efficient runtime layer and software for one-sided communication.

David Skinner, Leonid Oliker, John Shalf, Ali Pinar: Analysis of HPC interconnect performance on large-
scale systems using Skinner’s IPM. HFAST interconnect architecture.

3.1.7. Libraries

Esmond Ng, Sherry Li, Osni Marques, Tony Drummond, James Demmel, Kathy Yelick: Sparse linear
algebra. OSKI/SPARSITY auto-tuners. SuperLU.

Osni Marques, Tony Drummond: The DOE ACTS Collection — a collection of robust and scalable
software libraries and toolkits that implement a variety of numerical algorithms, and facilitate code
development, tuning and portability.

3.1.8. Algorithms

John Bell, Phil Colella: Adaptive multiscale methods (AMR). Chombo.

LBNL Software Roadmap to Plug and Play Petaflop/s 18

Sherry Li, Osni Marques, Juan Meza, Esmond Ng, Ali Pinar, and Chao Yang: High performance
algorithms on sparse matrices, combinatorial problems, and optimization.

Andrew Canning, Lin-Wang Wang: Materials science algorithms and applications. PARATEC, PeSCAN
(density functional theory). Efficient parallel 3D FFTs.

Julian Borrill and Peter Nugent: Algorithms in the area of cosmology.

Chris Ding, Ali Pinar: Algorithms in data mining, graph theory, and bioinformatics.

3.1.9. Benchmarking, Performance Modeling, and Analysis

Leonid Oliker: Benchmarking and analysis of ultrascale applications on the largest systems in the world.
Broad application experience and contacts with many software groups.

David Skinner: Performance analysis tools for parallel applications (IPM and related tools for visualizing
performance data).

Costin Iancu: Communications analysis for UPC and global memory languages.

Erich Strohmaier: Benchmarking and performance modeling for large-scale systems. (APEX Map).

David Bailey: NAS Parallel Benchmarks, leader of Performance Engineering Research Center (PERC).

Bill Kramer: The Sustained System Performance (SSP) and Effective System Performance (ESP) Tests.

Greg Butler, Rei Lee, David Skinner, Hongzhang Shan : I/O benchmarks for large scale I/O.

3.1.10. Operating Systems

Paul Hargrove, Jason Duell, Tom Davis: Linux checkpoint/restart. MVIA, FastOS.

3.1.11. Computer Architecture

Kathy Yelick, Leonid Oliker, John Shalf: Collaborations with David Patterson and Krste Asanovic at UC
Berkeley and with Christos Kozyrakis at Stanford. Research into opportunities for emerging architectures
such as Cell and ViVA. Development of new architectures such as IRAM and VIRAM (processor in
memory architecture).

3.1.12. Distributed and Grid Computing

Deb Agarwal, Bill Johnston, Keith Jackson, Steve Chan, Bill Kramer: LBNL is a leader in grid computing
and currently is supporting a dozen virtual organizations and grids in production.

3.1.13. Network Research

Deb Agarwal, Bill Johnston, Mary Thompson, Howard Walter, Brent Draney: LBNL is the home of ESnet,
an organization that takes a global, end-to-end view of networking requirements. LBNL’s history in
network research goes back to the early days of the Internet. It currently focuses on understanding network
bottlenecks.

3.1.14. CyberSecurity

Vern Paxson, Brent Draney, Scott Campbell, Nick Cardo, Howard Walter, Bill Kramer: Bro is a flexible
and proven instruction detection system. NERSC has been a leader in large-scale cyber security, both with
its track record, and through conferences, IT system administration practices, tutorials, and improving
software.

LBNL Software Roadmap to Plug and Play Petaflop/s 19

3.1.15. Computer Science

Strong connections to computer science and computational science disciplines. There include reliable and
adaptive distributed systems (Dave Patterson), sensor networks and reconfigurable systems (David Culler),
math algorithms (James Demmel), Center for Information Technology Research in the Interest of Society
(CITRIS) (James Demmel), storage (John Kubitowiz), theory, security (David Wagner), etc.

LBNL Software Roadmap to Plug and Play Petaflop/s 20

4. Who Are Other Key Players Who Will Play a Role and Can
Help?

4.1. Argonne National Laboratory

• Experience in MPI, might be best suited to address the high interconnect latency.

• Experience in operating systems that could be lightweight OS for these systems.

• Large-scale debugging.

• BG/L and fault-tolerant software: Pete Beckman, Susan Coughlan.

4.2. Lawrence Livermore National Laboratory

• Experience in MPI, might be best suited to address the high interconnect latency.

• Experience in operating systems that could be lightweight OS for these systems.

• Large-scale debugging.

• Large-scale visualization and data analysis: Hank Childs’s VisIT software infrastructure is an
important substrate for visualization of massive datasets. Valerio Pascucci’s space filling curves
and data streaming technology is essential for reorganizing data for efficient analysis and retrieval.

• Large-scale system assessment: Mark Seager has a long track record of identifying the weaknesses
in vendor roadmaps and architectural plans for the largest-scale ASC systems. LLNL contributes
valuable experience on risk assessment and mitigation for complex systems at all levels of the
effort.

• Experience in unstructured mesh discretization and refinements, multigrid algorithms for solving
linear systems, and algorithms for nonlinear equations: Lori Freitag Diachin, SciDAC Terascale
Simulation Tools and Technologies (TSTT) center.

• Experience in high performance modeling and simulations in large scale applications.

4.3. Oak Ridge National Laboratory

• Benchmarking and performance analysis: Patrick Worley and Jeff Vetter have a long track record
of benchmark and performance analysis of key DOE applications on large-scale systems.

• Benchmarking tools and technology: Jeff Vetter has a long history in the field of developing the
tools necessary for assessing massively parallel computing systems and applying the technologies
to real-world problems.

• Early systems evaluation: Worley, Vetter, Tom Dunigan.

• Climate model: John Drake, Pat Worley.

• Scalable System Software (SciDAC): Al Geist.

4.4. Pacific Northwest National Laboratory

• Global arrays / ARMCI

4.5. Sandia National Laboratory

• Low-level communication interfaces – PORTALS

LBNL Software Roadmap to Plug and Play Petaflop/s 21

• Computer system design and engineering: Bill Camp and Jim Thompson.

• High performance CFD (and combustion): John Shadid, Jackie Chen.

• High performance combinatorial algorithms: Bruce Hendrickson.

• Optimization: Bill Hart, Paul Boggs, and others.

• Numerical linear algebra: Rich Lehoucq.

• High performance computing in engineering applications (e.g., Salinas project for structural
dynamics, which won a Gordon Bell Prize).

4.6. Information Sciences Institute

• Fault tolerance and scalable system software: Bob Lucas.

• Advanced compiler technology: Mary Hall, Bob Lucas.

LBNL Software Roadmap to Plug and Play Petaflop/s 22

5. Identifying Requirements Using Scalable Performance Monitoring
Modern parallel systems are highly complex, and using them will continue to be significantly challenging.
Systems approaching the petascale will present even more challenges in all areas of software from
operating systems to storage to applications. One brief example is described below, based on performance
analysis work at NERSC.

Modern parallel computers consist of unprecedented numbers of components and subsystems. At such
scales, both the complexity and consequence of performance shortfalls is magnified as a performance issue,
when a single component out of tens of thousands is sufficient to erode the performance and therefore
delivered value of the entire system.

Massive concurrency brings with it two significant information management problems for application
performance analysis whose solution will require new software:

1. The volume of performance data generated requires specialized low overhead techniques for the
collection and aggregation of performance data. A profiling method that adds even modest
overhead will appear to a 10K-way application to be a nearly continuous interruption of the user
code. Careful attention must be paid to how aggregation and reporting are done.

2. The analysis, either offline or dynamic, of performance data becomes a significant problem for
performance tools and their users. In order to realize performance gains, the analysis of the data
must be scalable as well. Automated optimization techniques help lessen the overload of data to
the user by providing a higher-level performance analysis context.

Without performance monitoring infrastructure designed to be resilient at these scales, the value of
petascale systems, in terms of scientific output realized, will be significantly diminished. NERSC has
developed an infrastructure for non-invasively gathering performance data from a workload. Such an
infrastructure is useful in gaining insight into application performance and improvement, but also for
system software improvements.

The starting point for performance analysis is performance measurement. NERSC has developed a scalable
application profiling layer, IPM, which is useful at larges scales and has been demonstrated to scale well
beyond the concurrency regime of current NERSC machines. IPM has demonstrated scalability on BG/L
systems and been effective at identifying performance issues on 32K tasks as shown in Figure 1.

Application Architecture

Figure 1. Performance is more complex than a single number. Examining how performance varies within a parallel
application (in MPI rank space) or within the architectural space of the torus reveals important performance characteristics
and makes bottlenecks to performance clear. In application space, we see that most of the tasks spend more time
communicating than a particular a small fraction of tasks. This performance discontinuity is a likely indication of load
imbalance. By moving to the architectural space of machine coordinates within the torus, the bottlenecks that make up the
discontinuity become clear. Given the massive concurrency involved, care must be taken to retrieve and render the
relevant data but not all performance data.

LBNL Software Roadmap to Plug and Play Petaflop/s 23

Obtaining insight into the behavior of a parallel application or a system in this regime is challenging.
Having recognized that massive concurrency is a likely direction for HPC, NERSC is actively involved in
the examination and solution of the problems that come with it. Some of the trends in application and
architecture of petascale systems make obvious the technology gaps that exist:

• Trends toward using adaptive approaches such as adaptive mesh refinement to address
performance problems at large scale serve to exacerbate the problem of obtaining performance
insight by increasing the amount of time-varying behavior, including significant yet elusive load
imbalance problems. Gunter is using IMP to get “regional” snapshots of communication patterns.
[More information can be developed if needed.]

• Mesh and torus interconnects heighten the need for optimization not only of software and
algorithms but also of the placement of the parallel tasks in a parallel computer. This presents an
extra burden on the users of such a system, as they must not only optimize their code but also seek
optimal task placement geometries. The need to automate this optimization is largely unaddressed
on current large-scale 3D torus architectures. On BG/L, task placement is an open problem for
many codes that do not have obvious embeddings in a 3D grid. This software gap means that such
machines are less useful to wide classes of applications. NERSC is active in pursuing this issue
through both its Science-Driven System Architecture team and through long-range research into
interconnect alternatives.

• As the number of factors influencing application performance expands, the need to be able to take
frequent low overhead performance snapshots also expands. The huge number of conditions and
components that can lead to performance degradation is best managed by having an easily
accessed body of data on the performance health of the machine. NERSC makes heavy use of
regular performance monitoring of HPC resources. Even at today’s smaller scales, on multiple
occasions such performance health maintenance has revealed performance deficiencies that would
otherwise have gone unresolved.

LBNL Software Roadmap to Plug and Play Petaflop/s 24

6. Bellwether Ultrascale Applications
This section outlines a set of codes that provide good coverage application requirements for the DOE
scientific community, both in terms of application areas and key numerical algorithms. If the application
codes outlined in Table 1 are able to run scalably and successfully on petaflops precursors such as the XT3
and BG/L, then there is an opportunity to apply the lessons learned to the broader DOE community and
thereby ensure the success of peta scale systems when they emerge. More information about these
applications can be found in papers written by Leonid Oliker et al. (http://crd.lbl.gov/~oliker).

Table 1. Scientific application suite for evaluation study
representing a broad spectrum of numerical methods

Name Lines of Code Discipline Problem and Method Structure

MADCAP 5000 Cosmology CMB analysis via Newton-Raphson
using ScaLAPACK

Dense matrix

Cactus 84,000 Astrophysics Einstein’s theory of General Relativity via
finite differencing

Structured grid

LBMHD 1,500 Plasma Physics Magnetohydrodynamics via lattice
Boltzmann

Lattice

FVCAM 200,000+ Climate Modeling Atmospheric circulation via finite volume Structured grid

GTC 5,000 Magnetic Fusion Vlasov-Poisson equation via particle in
cell

Particle/grid (PIC)

SuperLU 42,000 Linear Algebra Sparse iterative solver using LU
decomposition

Sparse matrix

PMEMD 37,000 Life Sciences Molecular dynamics via particle mesh
Ewald

Particle

PARATEC 50,000 Material Science Material science density functional theory
via FFT

Spectral/3D-FFT +
dense matrix

SuperNova 200,000+ Combustion Rayleigh-Taylor via adaptive mesh
refinement

SAMR

GAMESS 500,000 Chemistry Density functional theory

MILC Quantum
Chromodynamics

Conjugate gradient algorithm for physics
on a 4D lattice

Sparse

6.1. Astrophysics: Cactus

One of the most challenging problems in astrophysics is the numerical solution of Einstein’s equations
following from the Theory of General Relativity (GR): a set of coupled nonlinear hyperbolic and elliptic
equations containing thousands of terms when fully expanded. The Cactus Computational ToolKit (CCTK)
is designed to evolve Einstein’s equations stably in 3D on supercomputers to simulate astrophysical
phenomena with high gravitational fluxes, such as the collision of two black holes and the gravitational
waves radiating from that event. The standard MPI driver for Cactus solves the PDE on a local grid section
and then updates the values at the ghost zones by exchanging data on the faces of its topological neighbors
in the domain decomposition. The update pattern employed by Cactus is typical of a broad class of PDE
solvers that use stencils on structured grids to iterate towards a solution. Therefore, the lessons learned
from optimizing Cactus for the XT3 and BG/L are entirely transferable to many important codes in the
DOE community.

LBNL Software Roadmap to Plug and Play Petaflop/s 25

6.2. Plasma Physics: LBMHD

Lattice Boltzmann methods (LBM) have proved a good alternative to conventional numerical approaches
for simulating fluid flows and modeling physics in fluids. The basic idea of the LBM is to develop a
simplified kinetic model that incorporates the essential physics and reproduces correct macroscopic
averaged properties. Recently, several groups have applied the LBM to the problem of magneto-
hydrodynamics (MHD) with promising results. LBMHD simulates the behavior of a two-dimensional
conducting fluid evolving from simple initial conditions and decaying to form current sheets. The
computational structure of LBMHD uses a 2D spatial grid coupled to an octagonal streaming lattice and
block distributed over a 2D processor grid.

Due to the relatively simplicity of LBMHD’s computational structure, combined with the significant
disparity between scalar and vector performance demonstrated in our work, this code has been chosen as an
application benchmark for the DOD HPCS evaluation effort. We plan to continue working closely with the
HPCS community in generating full-scale benchmark applications and disseminating our findings to the
HPC community at large.

6.3. Magnetic Fusion: GTC

The Gyrokinetic Toroidal Code (GTC) is a 3D particle-in-cell (PIC) application developed at the Princeton
Plasma Physics Laboratory to study turbulent transport in magnetic confinement fusion. GTC is currently
the flagship SciDAC fusion microturbulence code. Turbulence is believed to be the main mechanism by
which energy and particles are transported away from the hot plasma core in fusion experiments with
magnetic toroidal devices. An in-depth understanding of this process is of utmost importance for the design
of future experiments since their performance and operation costs are directly linked to energy losses. GTC
simulations of plasma microturbulence in a magnetic fusion device show elongated finger-like structures
are turbulent eddies in the electrostatic potential that act as energy and particle transport channels. This type
of calculation helped to shed light on anomalous energy transport that was observed in real experiments.

This code could potentially be scaled up to very large numbers of processors. We therefore plan to conduct
an extensive analysis of the tradeoffs between using a very high level of coarse-grained parallelism (as
found in BG/L) and utilizing a relatively small number of processors that leverage fine-grained vector
parallelism. A new data-decomposition scheme for GTC may, for the first time, enable a breakthrough of
the teraflop barrier and prepare the way for GTC simulations on near-petaflop platforms like the BG/L and
larger XT3 systems. We are working to help establish GTC as an HPCS application benchmark due to the
importance of this SciDAC fusion application and its potential to utilize ultra-scale computational
resources.

6.4. Material Science: PARATEC

PARATEC (PARAllel Total Energy Code) performs ab initio quantum-mechanical total energy
calculations using pseudopotentials and a plane wave basis set. The pseudopotentials are of the standard
norm-conserving variety. Forces can be easily calculated and used to relax the atoms into their equilibrium
positions. PARATEC uses an all-band conjugate gradient (CG) approach to solve the Kohn-Sham
equations of density functional theory (DFT) and obtain the ground-state electron wavefunctions.
PARATEC simulations are used to better understand nuclear magnetic resonance experiments. In solving
the Kohn-Sham equations using a plane wave basis, part of the calculation is carried out in real space and
the remainder in Fourier space using specialized parallel 3D FFTs to transform the wavefunctions. Due to
PARATEC’s global communication requirements, architectures with a poor balance between their
bisection bandwidth and computational rate will suffer performance degradation at higher concurrencies.

PARATEC is an extremely useful tool in evaluating the balance between computational resources and
global interprocessor communication facilities, and will be a critical component of our study in evaluating
the tradeoffs of evolving interconnect designs. Furthermore, a recent survey of NERSC ERCAP requests
for materials science applications showed that DFT codes similar to PARATEC accounted for nearly 80%

LBNL Software Roadmap to Plug and Play Petaflop/s 26

of all HPC cycles delivered to the materials science community. Therefore, PARATEC is an excellent
proxy to the application requirements of the entire materials science community.

6.5. Cosmology: MADCAP

The Cosmic Microwave Background (CMB) is a snapshot of the Universe some 400,000 years after the Big
Bang. The pattern of anisotropies in the CMB carries a wealth of information about the fundamental
parameters of cosmology. Realizing the extraordinary scientific potential of the CMB requires making
precise measurements of the microwave sky temperature over a significant fraction of the sky at very high
resolution. Such measurements are made by scanning the sky for as long as possible with a cryogenically
cooled telescope and as many microwave detectors as possible. The reduction of the resulting datasets —
first to a pixelized sky map, and then to an angular power spectrum — is a serious computational challenge,
and one which is only getting worse with increasing dataset sizes, as we try to make ever more precise
measurements. It is therefore critical to choose the optimal algorithmic approach and supercomputing
platform; one approach is the Microwave Anisotropy Dataset Computational Analysis Package
(MADCAP), which has been widely used on a variety of HPC platforms.

The full MADCAP spectral estimator includes a large number of special-case features, from preliminary
data checking to marginalization over foreground templates, which dramatically increase the size and
complexity of the code without altering its basic operational structure. For simplicity, we are therefore
developing a stripped-down version, called MADbench, a lightweight version of MADCAP expressly
designed for benchmarking, which retains the operational complexity and integrated system requirements
of the full application. We plan to publicly distribute MADbench, and use our synthetic benchmark
generation methodology as a model for creating full-scale portable codes for community-wide evaluation
efforts. Additionally, we are in the process of distributing MADbench to the HPCS community, as it
combines the potential for ultra-scale parallelism with the challenges of heavy I/O requirements. Several
other DOE-supported groups including the FastOS research community have shown interest in MADbench,
and we plan to work closely together to support their research efforts. Finally, utilizing MADbench on the
latest generation of HPC architectures will allow us to understand the system balances of various platforms,
especially in the context of I/O — a critical issue for future data-intensive analyses.

6.6. Climate Modeling: FVCAM

The Community Atmosphere Model (CAM) is the atmospheric component of the flagship Community
Climate System Model (CCSM3.0). Developed at the National Center for Atmospheric Research (NCAR),
the CCSM3.0 is extensively used to study climate change. The CAM application is an atmospheric general
circulation model (AGCM) and can be run either coupled within CCSM3.0 or in a standalone mode driven
by prescribed ocean temperatures and sea ice coverage. AGCMs are key tools for weather prediction and
climate research. They also require large computing resources: even the largest current supercomputers
cannot keep pace with the desired increases in the resolution of these models.

Lenny Oliker’s group at LBNL will continue the investigation of FVCAM across a broad spectrum of
computing platform using very large grid configurations and thousands of processors, with the goal of
isolating the performance-limiting architectural features. Due to the limited number of coarse-grained
domain decompositions, FVCAM represents an example of a code that may not benefit from ultra-parallel
systems, but must instead utilize fine-grained parallelism to extract the necessary degree of concurrency to
scale up to large systems. Our study will focus on understanding these tradeoffs for the latest HPC
platforms.

6.7. Combustion: AMR

A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen
white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and
Kelvin-Helmholtz instabilities, which serve to accelerate the flame to a large fraction of the speed of sound.
At present, the exact mechanism for the subsequent explosion of the star is unknown, and investigators
have turned to numerical simulation. The SuperNova code, developed by researchers in the Center for

LBNL Software Roadmap to Plug and Play Petaflop/s 27

Computational Sciences and Engineering at LBNL, is one such code that models the unstable flow
processes in reacting, degenerate nuclear matter that occurs in white dwarf stars. SuperNova utilizes
adaptive mesh refinement (AMR), a technique for automatically refining regions of the physical domain,
concentrating computational resources where interesting physics is occurring.

Massive parallelism exacerbates longstanding problems with balancing the need for communication
locality with memory balance and load-balancing requirements for AMR codes. Measuring and analyzing
these tradeoffs is a critical step in understanding the potential of effectively using massively parallel
architectures for future AMR computations. It is commonly believed that adaptive calculations will become
a key component of future high-fidelity multi-scale simulations across of broad spectrum of application
domains. However, to date, no AMR performance results at the enormous concurrencies offered at the
massive degree of parallelism of sub-petascale systems are currently available to the scientific community.
The lessons learned from running AMR codes on such systems will guide system requirements for codes
that specify more intelligent and targeted use of HPC resources rather than resorting to brute computational
force to meet the needs of multi-scale scientific problems.

6.8. Linear Algebra: SuperLU

An emerging method for scientific computation is the use of sparse matrix methods. We plan to explore
this important class of algorithms. Our current candidate is SuperLU, a general-purpose library for the
direct solution of large, sparse, nonsymmetric systems of linear equations on high performance machines.
The library routines perform an LU decomposition with partial pivoting and triangular system solves
through forward and back substitution. The LU factorization routines can handle non-square matrices, but
the triangular solves are performed only for square matrices. The matrix columns may be preordered
(before factorization) either through library- or user-supplied routines. This preordering for sparsity is
completely separate from the factorization. Working precision iterative refinement subroutines are provided
for improved backward stability. Routines are also provided to equilibrate the system, estimate the
condition number, calculate the relative backward error, and estimate error bounds for the refined solutions.
The irregular data access patterns of this code present a performance challenge for superscalar systems,
while the complexity of the control flow is expected to inhibit scalability and exacerbate load imbalances
on massively parallel systems such as BG/L and the XT3. This class of codes is at odds with traditional
cache-based architectures, and will allow us to evaluate the tradeoffs between various classes of memory
hierarchies. Like AMR, SuperLU offers insight into the requirements of applications that are able to attack
larger problems using elegance rather than brute force. The requirements for such applications must be
considered as essential for petascale platforms — lest we end up with overly specialized hardware
architectures that force us into brute-force numerical approaches.

6.9. Life Sciences: PMEMD

We are interested in investigating algorithms in the field of molecular dynamics, due to their increasing
importance and computational irregularity. One candidate code is PMEMD. PMEMD an application that
performs molecular dynamics (MD) simulations and minimizations using particle mesh Ewald molecular
dynamics. The force evaluation is performed in an efficiently parallel manner using state-of-the-art
numerical and communication methodologies. PMEMD uses a highly asynchronous approach to
communication for the purposes of achieving a high degree of parallelism. Variants on the parallel particle
mesh calculations in PMEMD are used in several other MD codes. The dynamic nature of this code inhibits
data-parallelism and will present a significant challenge for vector architectures. This application may
therefore benefit more from ultra-parallel systems than architectures that depend on fine-grained chip-level
parallelism. Our study will investigate these competing tradeoffs.

LBNL Software Roadmap to Plug and Play Petaflop/s 28

6.10. Chemistry: GAMESS

GAMESS14 is a program for ab initio molecular quantum chemistry. Briefly, GAMESS can compute SCF
wavefunctions ranging from RHF, ROHF, UHF, GVB, and MCSCF. Correlation corrections to these SCF
wavefunctions include configuration interaction, second order perturbation theory, and coupled-cluster
approaches, as well as the density functional theory approximation. Nuclear gradients are available for
automatic geometry optimization, transition state searches, or reaction path following. Computation of the
energy Hessian permits prediction of vibrational frequencies, with IR or Raman intensities. Solvent effects
may be modeled by the discrete effective fragment potentials or continuum models such as the polarizable
continuum model. Numerous relativistic computations are available, including third-order Douglas-Kroll
scalar corrections and various spin-orbit coupling options. The fragment molecular orbital method permits
many of these sophisticated treatments to be used on very large systems by dividing the computation into
small fragments.

A variety of molecular properties, ranging from simple dipole moments to frequency-dependent
hyperpolarizabilities, may be computed. Many basis sets are stored internally, together with effective core
potentials, so all elements up to radon may be included in molecules. Most computations can be performed
using direct techniques, or in parallel on appropriate hardware. Graphics programs, particularly the
MacMolPlt program for the Macintosh, are available for viewing of the final results.

6.11. QCD: MILC

The MILC code is a set of codes developed by the MIMD Lattice Computation (MILC) collaboration for
doing simulations of four dimensional SU(3) lattice gauge theory on MIMD parallel machines. The latest
version of this code includes libraries and routines for SU(2) gauge theory as well. The MILC Code is
publicly available for research purposes.

14 “General Atomic and Molecular Electronic Structure System,” M. W. Schmidt, K. K. Baldridge, J. A.
Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L.
Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem., 14, 1347–1363 (1993).

LBNL Software Roadmap to Plug and Play Petaflop/s 29

7. Software Requirements for Petascale Production Systems
This section provides a detailed enumeration of system software requirements that NERSC requires of its
production systems. The requirements below evolved from the NERSC-3, -4, and -5 contracts and should
be considered an almost minimal set of requirements to have systems work well for a diverse, capability
workload. DOE could use these requirements as formatted below, along with benchmark results for the
codes in section 6, to assess systems from vendors or large-scale computing sites.

For each requirement below, a rating could be given in brackets for the Cray XTE, IBM BlueGene/L, and
IBM Power SP. For example, [Yes, Maybe, No] indicates our understanding that the Cray XT3 does meet
this requirement, the IBM BlueGene/L may meet it, and the IBM Power SP does not meet it. Possible means
the vendor is currently considering whether to support the requirement.

7.1. Supported Functionality

All publicly-available APIs provided with this system will have accurate and complete documentation. In
particular, any APIs or features of APIs that are not to be used by the site will be explicitly documented as
such.

7.2. Operating System Software

7.2.1. 64-Bit Address Space Software Support [______, ______, ______]

The operating system shall support a 64-bit address space for both privileged and user level
applications.

7.2.2. The operating system and necessary system software, including subsequent
releases, shall reside within no more than 5% of the memory on a node. [______,
______, ______]

The Vendor’s supplied operating system including all associated system functions and services shall
reside within 5% of physical memory. This limit includes the kernel, interconnect overhead, MPI
overhead, workload manager, job launcher, RAM disk, and any system monitoring.

7.2.3. Aggregate User Accessible Memory [______, ______, ______]

Aggregate user accessible memory shall be determined via the following formula:

()∑ 9.*imemory

where memoryi represents the memory on a single node.

Aggregate user accessible memory shall be accessible via an unprivileged parallel user application.

7.2.4. Available Compute Cycles [______, ______, ______]

The operating system, subsequent releases, and necessary system software shall consume ≤ 1% of
all available compute cycles.

7.2.5. Process Accounting [______, ______, ______]

The operating system shall have the ability to record usage of processes that execute on the system.
Accounting records from each source contain the following usage information:

• Command name

LBNL Software Roadmap to Plug and Play Petaflop/s 30

• Path to command

• Start timestamp

• End timestamp

• User CPU usage

• System CPU usage

• User ID

• Group ID

• Account ID

• Job/session ID

• Batch job identifier

• TTY name

• Memory usage

• Characters read/write

• Blocks read/write

• Process exit status

7.2.6. Process Limits [______, ______, ______]

Standard UNIX/Linux process limits as supported by a standard distribution of the operating system
shall be supported. These include, but are not limited to, hard and soft limits for:

• Time (CPU-seconds)

• File (blocks)

• Core dump (blocks)

• Data (kilobytes)

• Locked memory (kilobytes)

• Memory (kilobytes)

• Number of open files (descriptors)

• Process limit

7.2.7. Co-Scheduling [______, ______, ______]

The operating system shall support the “co-scheduling” functionality. Co-scheduling is the ability to
align system processes to be executed nearly simultaneously. This minimizes the impact of system
processes on the system.

This functionality further spans to allow parallel jobs on multiple nodes to be co-scheduled on the
processors nearly simultaneously.

7.2.8. Operating System Security [______, ______, ______]

File Access: Discretionary access control mechanism restricting file access based on ownership and
permissions shall be supported on all filesystems.

Access Control Lists: ACLs shall be supported on all filesystems.

LBNL Software Roadmap to Plug and Play Petaflop/s 31

Passwords: Encrypted passwords shall be stored in a secure manner (i.e., only readable by
privileged users).

Privileges: A facility shall exist that allows only a subset of “super-user” privileges to be granted to
a specific user.

7.2.9. Login Information [______, ______, ______]

Users shall be notified upon successful login of the following information:

• Date and time of last successful login

• Date and time of last unsuccessful login (if appropriate)

• Total number of unsuccessful logins since their last successful login (if appropriate)

7.2.10. Secure Shell [______, ______, ______]

The Vendor shall provide and support the current and new versions of OpenSSH.

7.2.11. Secure Socket Layer [______, ______, ______]

The Vendor shall provide and support the current and new versions of OpenSSL.

7.2.12. Lightweight Directory Access Protocol [______, ______, ______]

The Vendor shall provide and support the current and new versions of OpenLDAP.

7.2.13. Pluggable Authentication Modules [______, ______, ______]

The Vendor shall provide and support PAM. This includes a generalized API that provides
authentication services with which new authentication methods can be written. Authentication
policies can be modified by editing configuration files.

7.2.14. Linux and/or UNIX Operating Systems [______, ______, ______]

Standards supported by the Vendor:

• IEEE 1003.1-1996 [POSIX System Interfaces]

• IEEE 1003.2-1992 [Shell and Utilities]

• X/Open PG4

• Open Group UNIX95 and UNIX98 branding

In areas where the operating system is not compliant with the standards above, the Vendor shall
clearly identify lack of compliance.

7.3. Inter-Node Communication Network

7.3.1. High Availability Configuration [______, ______, ______]

The Interconnect shall be run and managed in a highly available configuration. The Interconnect
shall support the capabilities necessary for running and managing a highly available interconnect
configuration.

Configuration tables are used for data flow mapping across the interconnection network. They shall
be reloaded in the event of a hardware failure, thus providing a means to reconfigure the

LBNL Software Roadmap to Plug and Play Petaflop/s 32

interconnection network around hardware failures. Routing tables shall be reconfigured and
dynamic so a reconfiguration does not require a full system boot.

The system can survive partial interconnect failure with the loss of only a single node.

7.3.1.1. Dynamic Route Management [______, ______, ______]

The Interconnect topology shall be dynamically reconfigurable. All links/planes shall be
capable of being dynamically removed from or joined with the interconnect fabric. Tools
shall exist to identify the end points of any given link.

7.3.1.2. Automatic Dynamic Rerouting [______, ______, ______]

The Interconnect fabric shall be capable of automatically reconfiguring routes to optimize
around failed components. Upon completion of any repair actions, the Interconnect shall
detect the repaired component and perform optimization of routing to utilize the returned
hardware.

7.3.1.3. Dynamic Hardware Failure Recovery [______, ______, ______]

All components of the Interconnect fabric shall be capable of being dynamically removed
or joined to the Interconnect fabric without restarting the entire Interconnect.

7.3.1.4. Dynamic Congestion Management [______, ______, ______]

The Interconnect fabric shall be capable of detecting congested links and dynamically
reroute traffic via an alternate path.

7.3.1.5. Node Dynamic Switch Management [______, ______, ______]

The Vendor’s system shall support the capability of dynamically removing or
dynamically adding a node to the Interconnect fabric.

7.3.1.6. Online Interconnect Diagnostics [______, ______, ______]

The Interconnection shall support the capability of having diagnostics performed while
running production workloads. These diagnostics shall be capable of, but not limited to,
identifying failed interconnect links, identifying degraded links, and topology
verification.

7.3.1.7. Online Adaptor Diagnostics [______, ______, ______]

The Vendor’s system shall be capable of performing online diagnostics against the
interconnect adapter. These diagnostics shall be capable of, but not limited to, detecting
failed adapters, detecting adapters running at degraded performance levels, and point-to-
point topology verification.

7.3.1.8. Link Failure [______, ______, ______]

No link failure shall result in a total failure of the interconnect.

7.3.1.9. Router Failure [______, ______, ______]

No router failure shall result in a total failure of the interconnect.

LBNL Software Roadmap to Plug and Play Petaflop/s 33

7.4. Workload Management

7.4.1. Batch System

7.4.1.1. Modifiable Limits and Resources [______, ______, ______]

A utility shall exist that can modify the requested limits and resources for a batch job.

7.4.1.2. Queue Reallocation [______, ______, ______]

A utility shall exist that can reallocate a batch job to a new batch queue.

7.4.1.3. SMP Scheduling [______, ______, ______]

The batch system shall perform SMP scheduling, the ability to schedule multiple tasks
per node.

7.4.1.4. Packed/Unpacked Scheduling [______, ______, ______]

The batch system shall support the capability to specify that a node be dedicated to a
single job or shared with multiple jobs.

7.4.1.5. Multiple Job Queues [______, ______, ______]

The batch system shall be capable of organizing jobs by job queues. Each queue can have
different priorities and limits.

7.4.1.6. Queue Complexes [______, ______, ______]

The batch system shall be capable of organizing a set of queues into a queue complex.
All limits shall be applicable to a queue complex and shall govern the set of queues
within the complex.

Characteristics and priorities may be assigned to complexes and to each queue within a
complex independently.

7.4.1.7. User Limits [______, ______, ______]

The batch system shall be capable of setting and enforcing per-job user limits. These
limits shall be dynamically configurable and enforceable for queues, jobs, users, and
groups.

7.4.1.8. Batch Job Aging [______, ______, ______]

The batch system shall be capable of being dynamically configured to enforce an aging
algorithm that takes into account the time the job was queued for the computation of job
priority.

7.4.1.9. Scheduler Statistics [______, ______, ______]

The batch systems scheduler shall be capable of producing detailed statistics for analysis
of scheduler performance.

LBNL Software Roadmap to Plug and Play Petaflop/s 34

7.4.1.10. Scheduler Hints [______, ______, ______]

The batch systems scheduler shall be capable of providing an informative message as to
why a job has not been chosen to run. Such examples include but are not limited to a
batch queue’s run limit being reached.

7.4.1.11. Job Routing [______, ______, ______]

The batch systems scheduler shall be capable of routing jobs to the appropriate queue
based on the jobs’ requirements. The queues need not be on the same system.

7.4.1.12. Queue Limits [______, ______, ______]

Resource and job limits shall be enforceable at the queue level. Such limits include and
are not limited to:

• CPU time

• Wallclock time

• Memory

• Running jobs

• Per user running jobs

• Per group running jobs

• Queued jobs

• Per user queued jobs

• Per group queued jobs

7.4.1.13. Job Limits [______, ______, ______]

All resource limits shall be enforceable for a single job.

7.4.1.14. User Limits [______, ______, ______]

All resource limits shall be enforceable at the user level.

7.4.1.15. Group Limits [______, ______, ______]

All resource limits shall be enforceable at the UNIX group level.

7.4.1.16. Resource Limits [______, ______, ______]

The batch system shall support resource limits. These resources shall include but are not
limited to CPUs, memory, disk space, and nodes.

7.4.1.17. Consumable Resource Limits [______, ______, ______]

The batch system shall support consumable resources. These resources shall include but
are not limited to CPUs, nodes, memory, licenses , disk space, and site-specific defined
consumables. Consumable resources are distributed to multiple batch jobs until the
resource is exhausted.

LBNL Software Roadmap to Plug and Play Petaflop/s 35

7.4.1.18. Job/User Favoring [______, ______, ______]

The batch system shall be capable of identifying a user or batch job and favoring the job
or user to the head of the queue. The action shall also be capable of being undone.

7.4.1.19. Documentation [______, ______, ______]

The Vendor shall supply all documentation for the batch system. Documentation shall
consist of all manuals and man pages. All documentation shall be complete and all-
inclusive for the version installed.

7.4.1.20. Accounting [______, ______, ______]

The batch system shall have a comprehensive list of data recorded for each batch job.
This data shall include but is not limited to:

• Multi-node resource consumption data; individual node resource usage data for
each individual node used by the job

• Job ID

• Job name

• Credentials (user/group/account)

• Pathnames

• Environment variables

• Memory: Individual node, job’s high water mark, average usage

• I/O rates for disk and networking

• CPU: user, system, and I/O wait time

• Wallclock time consumed

• Submit timestamp

• Dispatch timestamp

• Completion timestamp

• Hardware counters

• Events

• Job requirements

7.4.1.21. Prolog/Epilog [______, ______, ______]

The batch system shall support the capability of executing a custom written prolog and
epilog. All details regarding a job’s requirements and usage shall be made available to the
prolog and epilog.

The batch system shall support two types of prologs/epilogs: one that will run on a single
(starter) node, and one that can run on all nodes for the job.

System-wide prologs/epilogs are defined at the system level and shall apply to all jobs
and users. Users many also define prologs/epilogs that shall apply to all the jobs
submitted by that user. The system-wide prolog shall execute before any user-defined
prolog. The system-wide epilog shall execute after any user-defined epilog.

LBNL Software Roadmap to Plug and Play Petaflop/s 36

7.4.1.22. Dynamic Configuration Updates [______, ______, ______]

All configuration options for the batch system shall be dynamically settable. The batch
system shall not be required to be shut down for changes to take effect.

7.4.1.23. Workload Manager Documentation [______, ______, ______]

The workload manager’s documentation shall be clearly written, concise in descriptions,
as well as complete for the batch system.

7.4.1.24. Configuration Validation [______, ______, ______]

A utility shall exist with the batch system to validate the settings in the batch system’s
configuration files. This utility shall identify invalid options as well as syntactical errors.

7.4.1.25. Submit Filter [______, ______, ______]

The batch system shall support the capability of passing all batch jobs through a site-
defined filter which can reject a job at the time of submission. All requirements and job
details shall be passed to the submit filter.

7.4.1.26. High-Availability Configuration [______, ______, ______]

The batch system shall support high-availability computing environments. No single
component of the batch system shall cause the batch system to not function in full
production. Automatic failover of batch system components shall also be configurable
and supported.

7.4.1.27. Dynamic Default Value Initialization [______, ______, ______]

All configurable settings shall be dynamically settable and initialized to values
determined by the site.

7.4.1.28. Job Scheduling Based on Requirements [______, ______, ______]

The batch system shall support the capability of scheduling jobs system-wide based on
requested node resources and limits. The batch system shall also be capable of scheduling
jobs of varying degrees of concurrency to maximize the utilization of the compute pool.

7.4.1.29. Per-User Per-Class Limits [______, ______, ______]

The batch system shall support the capability of per-user per-class limits. Each class in
the batch system shall be capable of independent user limits with respect to other job
classes.

7.4.1.30. Process/Job Migration [______, ______, ______]

The batch system shall be capable of interrupting a job and relocating it to a different set
of processors. The capability shall exist for any number of tasks up to the entire job.

7.4.1.31. Migration Timing [______, ______, ______]

All migrations shall complete in less than 10 minutes.

LBNL Software Roadmap to Plug and Play Petaflop/s 37

7.4.1.32. Checkpoint/Restart [______, ______, ______]

The batch system shall be capable of checkpointing a running batch job and restarting it,
from the point it left off, at a later time. Restart on different nodes.

7.4.1.33. Checkpoint Time [______, ______, ______]

Checkpointing the full system running in production shall complete is less than 30
minutes.

Checkpointing a single job utilizing up to 25% of the compute pool shall complete in less
than 5 minutes.

Checkpointing a single job utilizing up to 50% of the compute pool shall complete in less
than 10 minutes.

Checkpointing a single job utilizing up to 75% of the compute pool shall complete in less
than 15 minutes.

7.4.1.34. Restart Time [______, ______, ______]

The time to restart a checkpointed job shall be less than or equal to the time to checkpoint
that job.

7.4.1.35. Advance Reservations [______, ______, ______]

The batch system shall be capable of reserving a part or the whole compute partition for a
specific time for a given duration. This reservation shall support the ability to specify
users that can run on the reserved nodes during the reservation. It shall also be possible to
have recurring and persistent reservations.

7.4.1.36. Backfill Scheduler [______, ______, ______]

The batch system shall include a scheduler that utilizes an effective and efficient backfill
algorithm with priority override capability.

7.4.1.37. Fair Share Scheduler [______, ______, ______]

The batch system shall include a scheduler that utilizes an effective and efficient fair
share algorithm with priority override capability.

7.4.1.38. Batch System Gang Scheduling [______, ______, ______]

The batch system shall support the capability of allowing multiple jobs to be run on a
single node. All tasks for any single job shall be scheduled simultaneously across all
nodes for that job.

7.4.1.39. Batch System Job Preemption [______, ______, ______]

The batch system shall be capable of preempting a running job in order to make resources
available for higher priority work.

7.4.1.40. IEEE 1003.2 Compliance [______, ______, ______]

The batch system shall be in compliance with the IEEE 1003.2 standard for batch
systems.

LBNL Software Roadmap to Plug and Play Petaflop/s 38

7.4.1.41. Dynamic Scheduling Control [______, ______, ______]

The batch system shall support the ability to start the batch system without scheduling
jobs, then dynamically be capable of initiating the scheduling of batch jobs.

7.4.1.42. Capability Computing [______, ______, ______]

The site shall have the ability to apply all batch system defined resources of the system to
a single parallel application. This application may be composed of a mixture of baseline
programming languages and baseline programming paradigms.

7.4.1.43. Node Specifications [______, ______, ______]

The batch system shall support the capability of specifying a set of nodes for the batch
job to run on.

7.4.1.44. Alternate Credential Submission [______, ______, ______]

The batch system shall support the capability of submitting batch jobs with a different set
of user credentials. Alternate credentials shall be specified at the time of job submission
and validated. These credentials shall be used to initiate and record all job resource
consumption. The batch system’s accounting records shall indicate the credentials of the
submitter as well as the credentials of the job.

7.4.1.45. Environment Variables [______, ______, ______]

The batch system shall support the capability of passing environment variables to the
batch job to be utilized by the batch job.

7.4.1.46. Account Name [______, ______, ______]

The batch system shall support the capability of specifying an account name to charge the
resource consumption against.

7.4.1.47. Grid Submissions [______, ______, ______]

The batch system shall interface to commonly used Grid software tools such as Globus,
Open Grid Services Architecture, and Virtual Data Toolkit.

7.4.2. Job Launcher

7.4.2.1. Effective Job Launcher [______, ______, ______]

The Vendor shall supply and support a utility for effectively and efficiently launching
batch jobs onto the computational nodes.

7.4.2.2. Launch Timing [______, ______, ______]

Launching a single job utilizing up to 25% of the compute pool shall complete in less
than 15 seconds.

Launching a single job utilizing up to 50% of the compute pool shall complete in less
than 30 seconds.

Launching a single job utilizing up to 75% of the compute pool shall complete in less
than 45 seconds.

LBNL Software Roadmap to Plug and Play Petaflop/s 39

Launching a single job utilizing up to 100% of the compute pool shall complete in less
than 60 seconds.

7.4.2.3. Administrative Control [______, ______, ______]

The Vendor’s job launcher shall support the capability of being restricted to batch jobs
only. This restriction shall require privileged access to change.

7.4.2.4. Capability Computing [______, ______, ______]

The site shall have the ability to launch a job across all batch system defined resources of
the system to a parallel application. This application may be composed of a mixture of
baseline programming languages and baseline programming paradigms.

7.4.2.5. Node Specifications [______, ______, ______]

The job launcher shall support the ability to specify the nodes to launch the job on. This
functionality shall work outside the batch system.

7.4.2.6. I/O Redirection [______, ______, ______]

The job launcher shall support the capability of redirecting STDIO, STDERR, and
STDIN.

7.4.2.7. Environment Variables [______, ______, ______]

The job launcher shall support the capability of passing environment variables to the
application.

7.4.2.8. Credentials [______, ______, ______]

The job launcher shall be capable of passing user credentials to the computational nodes.

7.4.2.9. Account Name [______, ______, ______]

The job launcher shall support the capability of specifying an account name to charge the
resource consumption against.

7.5. Network Software

7.5.1. Monitoring of Network Interfaces [______, ______, ______]

All network interfaces shall be capable of being monitored via the Vendor’s supplied SNMP
(Simple Network Management Protocol) agent that supports MIB-II (Management Information
Base).

7.5.2. Host Resolution [______, ______, ______]

Host resolution shall have the capability of being arbitrarily ordered (DNS, NIS, /etc/hosts).
Re-ordering can be achieved by specifying a new ordering in /etc/nsswitch.conf.

LBNL Software Roadmap to Plug and Play Petaflop/s 40

7.5.3. Internet Protocol (IPv4) [______, ______, ______]

IPv4 shall be supported on all network interfaces. The Vendor’s IPv4 implementation shall also
conform to RFC 1323, “TCP Extensions for High Performance” (window shift feature), and MTU
(Maximum Transmission Unit) discovery.

7.5.4. Internet Protocol (IPv6) [______, ______, ______]

IPv6 shall be supported on all network interfaces. The Vendor’s IPv6 implementation shall also
conform to RFC 1323, “TCP Extensions for High Performance” (window shift feature), and MTU
(Maximum Transmission Unit) discovery.

7.5.5. Packet Filtering [______, ______, ______]

The operating system shall support the capability of filtering packets on all interfaces. This shall be
dynamically configurable.

7.6. Filesystem Software

7.6.1. Network File System (NFS) [Yes, Yes, Yes]

7.6.1.1. Network File System Version 3 [______, ______, ______]

The Vendor shall provide support for NFS version 3 (NFSv3). The Vendor shall also
provide both the client and server versions of the software. It shall be supported on all
network interfaces.

7.6.1.2. Network File System Version 4 [______, ______, ______]

The Vendor shall provide support for NFS version 4 (NFSv4) (date available to be
determined). The Vendor shall also provide both the client and server versions of the
software. It shall be supported on all network interfaces.

7.6.1.3. NFS Maximum Filesystem Size [______, ______, ______]

The NFSv3 and NFSv4 architecture shall architecturally support a 500 TB filesystem.

7.6.1.4. NFS Maximum File Size [______, ______, ______]

NFSv3 and NFSv4 shall support a single file size equal to the maximum size of the
filesystem that is being exported.

7.6.1.5. POSIX Compliant NFSv3 and NFSv4 [______, ______, ______]

NFSv3 and NFSv4 filesystems shall follow the POSIX standards.

7.6.1.6. NFS File Count [______, ______, ______]

A single NFSv3 or NFSv4 filesystem shall be able to support up to the maximum number
of files of the native filesystem which is being exported.

LBNL Software Roadmap to Plug and Play Petaflop/s 41

7.6.1.7. NFS File Access Time [______, ______, ______]

NFSv3 and NFSv4 shall be able to access an existing file in a 95% full NFSv3 or NFSv4
filesystem within a 5% time delta of the same file in a 5% full NFSv3 or NFSv4
filesystem.

7.6.2. Parallel Filesystem (GPFS, Lustre, or PNFS)

7.6.2.1. GPFS Open [______, ______, ______]

The Vendor shall supply and support a mechanism for GPFS filesystem access from the
system..

7.6.2.2. 1 PB Filesystem [______, ______, ______]

The global parallel filesystems shall support a size of 1 PB.

7.6.2.3. Single File Size Equal to Size of Filesystem [______, ______, ______]

The filesystem shall support a single file equal to the size of the filesystem.

7.6.2.4. File Access Time for Full Filesystems [______, ______, ______]

The global filesystem shall be able to access an existing file in a 95% full filesystem
within a 5% time delta of the same file in a 5% full global filesystem under the same
system load.

7.6.2.5. Automatic Filesystem Recovery [______, ______, ______]

A SIO node failure shall be detected by the global filesystem or any of its subcomponents
and recovery actions launched automatically.

7.6.2.6. Global Filesystem Recovery [______, ______, ______]

Failure of a global filesystem component or service node shall be detected and recovery
actions initiated. A user process shall not fail due to a pending request that cannot be
serviced during the recovery period.

7.6.2.7. 10 Million Files per TB of Storage [______, ______, ______]

The global filesystem shall support 10 million files per TB of filesystem storage.

7.6.2.8. DMAPI Support [______, ______, ______]

The global filesystems shall support the DMAPI standard.

7.6.2.9. Backup/Restore [______, ______, ______]

The Vendor shall provide and support an efficient mechanism for backing up and
restoring global filesystems.

7.6.2.10. System Software Characteristics [______, ______, ______]

The global filesystems shall have the following traits:

LBNL Software Roadmap to Plug and Play Petaflop/s 42

• High availability

• High performance

• Zero corruption of data

• Zero loss of data

7.6.2.11. User/Group Disk Quotas [______, ______, ______]

The global filesystems shall provide user and group inode and block quota limits.

7.6.2.12. Quotactl [______, ______, ______]

The global filesystems shall utilize the quotactl system call for manipulating disk quotas.

7.6.2.13. Metadata Update Times [______, ______, ______]

The global filesystems shall update metadata globally within 300 seconds. Updates on the
node performing the update operation shall be updated immediately.

7.6.2.14. File Creation Timing [______, ______, ______]

A global filesystem shall be capable of creating a million files in a single directory in less
than 1 hour using standard system calls on a single node.

7.6.2.15. Directory Tree File Creation Timing [______, ______, ______]

A global filesystem shall be capable of creating a million files in a directory hierarchy in
less than 2 hours using standard system calls on the same node. The directory hierarchy
shall be defined and created by a site-defined test.

7.6.2.16. File Listing Timing [______, ______, ______]

A global filesystem shall be capable of performing stat system calls on a million files in a
single directory in less than 30 minutes.

A global filesystem shall be capable of generating a long listing (e.g., ls -l) of a million
files in a directory hierarchy in less than 40 minutes. The directory hierarchy shall be
defined and created by a site-defined test.

7.6.2.17. Filesystem Statistics [______, ______, ______]

The Vendor shall provide, support, and document an API for accessing global filesystem
usage and performance statistics.

7.6.2.18. 18 GB/s Aggregate Bandwidth [______, ______, ______]

The global filesystem shall be capable of sustaining an aggregate bandwidth of at least
18 GB/s.

7.6.2.19. 1 GB/s Single Stream Bandwidth [______, ______, ______]

The global filesystem shall be capable of sustaining a bandwidth of at least 1 GB/s from a
single compute node.

LBNL Software Roadmap to Plug and Play Petaflop/s 43

7.6.2.20. 10,000 Aggregate Metadata Operations per Second [______, ______,
______]

The global filesystem shall be capable of sustaining an aggregate of at least 10,000
metadata operations per second.

7.6.2.21. 2,500 Single Node Metadata Operations per Second [______, ______,
______]

The global filesystem shall be capable of sustaining at least 2,500 metadata operations
per second from a single node.

7.6.2.22. 1 PB Filesystem [______, ______, ______]

The global parallel filesystem shall support a size of 1 PB.

7.6.2.23. Single File Size Equal to Size of Filesystem [______, ______, ______]

The filesystem shall support a single file equal to the size of the filesystem.

7.6.2.24. File Access Time for Full Filesystems [______, ______, ______]

The global filesystem shall be able to access an existing file in a 95% full filesystem
within a 5% time delta of the same file in a 5% full global filesystem under the same
system load.

7.6.2.25. Automatic Filesystem Recovery [______, ______, ______]

A service/IO node failure shall be detected by the global filesystem or any of its
subcomponents and recovery actions launched automatically.

7.6.3. Parallel I/O [______, ______, ______]

The global filesystem shall support simultaneous file access to one or more files from all nodes in
the cluster via multiple I/O paths.

7.6.4. Large Files [______, ______, ______]

The global filesystem shall support files the size of the filesystem containing them.

7.6.5. Storage Network Management [______, ______, ______]

All storage network interfaces shall be capable of being monitored via the Vendor’s supplied SNMP
(Simple Network Management Protocol) agent that supports MIB-II (Management Information
Base).

7.7. Security

DOE Office of Science sites’ primary security focus is to prevent unauthorized access. Hostile actions,
intentional or unintentional, shall not inhibit access by users to DOE resources.

LBNL Software Roadmap to Plug and Play Petaflop/s 44

7.7.1. X/Open GSS-API Standard Interface [______, ______, ______]

The system shall support a complete implementation of the X/Open GSS-API standard interface. In
areas where the system is not compliant with the standard, the Vendor shall clearly identify lack of
compliance.

7.7.2. Documented Port Numbers [______, ______, ______]

The Vendor shall provide documentation identifying all port numbers used by the Vendor-supplied
software.

7.8. System Management Facilities

7.8.1. Single Point of Control [______, ______, ______]

The Vendor’s system shall be managed from a single point of control. The Vendor’s system
maintenance and control workstations are able to boot, dump, and monitor components of the
system.

The disk subsystem is powered on and shut down separately. Once powered on, the disk subsystem
is managed through the system maintenance workstation.

7.8.2. Warm Boot in 15 Minutes [______, ______, ______]

The Vendor’s system shall boot from all nodes to full production status at a powered-on but shut-
down state in 15 minutes. Production status is reached when users are capable of establishing login
sessions, all filesystem space is available across all nodes, and batch jobs are running.

7.8.3. Cold Boot in 1 Hour [______, ______, ______]

The Vendor’s system shall boot all nodes from a powered-off state to full production status in
1 hour. Production status is reached when users are capable of establishing login sessions, all
filesystem space is available across all nodes, and batch jobs are running.

7.8.4. Internal Service, Diagnostic, and Analysis Tools [______, ______, ______]

Upon request, the Vendor will provide any internal service, diagnostic, or analysis tools that are
used by Vendor service personnel. The site agrees to keep such tools confidential.

7.8.5. System Dump Facility [______, ______, ______]

The Vendor will provide a dump tool that analyzes and collects information from a system that is
failing or has failed, crashed, or hung. This analysis is performed on, but not limited to, event log
data, active heartbeat probing, voltages, temperatures, health faults, portals trace buffers, in-memory
console buffers, and high-speed interconnect network errors. When failed components are found,
detailed information is gathered from those components.

7.8.6. Node Diagnostics [______, ______, ______]

There are no online diagnostics. The Vendor shall supply the following offline diagnostics:

• memtest: Tests memory; detects memory faults and memory-related failures.

• cpuburn: Runs a loop of instructions for a specified time (intent is to heat CPUs).

• adaptor check: Tests internal functions of and interfaces to the CPU and L0; detects bad and
failed interfaces in the path from L0 to adaptor to CPU.

LBNL Software Roadmap to Plug and Play Petaflop/s 45

• link: Simple HSN ping test between an adaptor and its nearest neighbor adaptor; detects bad
adaptor and simple interconnect problems.

7.8.7. System Monitoring [______, ______, ______]

The Vendor shall provide a set of applications, each of which has a graphical user interface (GUI),
that enables the site to perform monitoring and system management tasks by directly manipulating
icons that represent system objects.

7.8.8. Node Warm Boot [______, ______, ______]

A warm boot of a single compute and service/IO node shall complete in less than 4 minutes.

7.8.9. Node Cold Boot [______, ______, ______]

A cold boot of a single compute and service/IO node shall complete in less than 8 minutes.

7.9. Node-Level Activity Monitoring [______, ______, ______]

The Vendor shall provide and support node-level activity monitoring via sar.

7.10. Application Development Environment

7.10.1. Baseline Languages, Parallel Programming Models, and Libraries [______, ______,
 ______]

Baseline languages include assembler, Fortran, C, UPC, and C++ as described in Programming
Languages below. Baseline parallel programming models include MPI and SHMEM. Baseline
libraries include SCALAPACK, SuperLU, ACML, and Portals. The baseline languages and parallel
programming models shall be extended to include OpenMP and Posix threads as described below.

7.10.2. Optimizing Compilers [______, ______, ______]

Baseline programming language compilers shall be capable of producing highly optimized
executables. The compilers shall provide statistics and information regarding the nature of the
optimizations performed on the source code in a readily understandable format.

7.10.3. IEEE Conformance [______, ______, ______]

All numerical library routines support ANSI/IEEE Std 754-1985 32- and 64-bit (as appropriate)
numerical formats. All transcendental functions in ACML and libm return results shall be accurate
to within 1, or in limited cases, 2 ulps. The libm routines used by the PGI and gcc compilers are
IEEE754 and C99 compliant. The corresponding routines in the ACML library achieve the same
accuracy, but obtain higher speed by not raising exception flags in exceptional cases and in that
respect only are not C99 or F2003 compliant. All other numerical routines in ACML, libm, and
libSci use numerically sound algorithms and achieve the levels of accuracy that are appropriate and
expected for data in ANSI/IEEE Std 754-1985 basic 32- and 64-bit (as appropriate) numerical
formats.

7.10.4. Capability Computing [______, ______, ______]

The site shall have the ability to apply all compute resources of the system to a parallel application.
This application may be composed of a mixture of baseline programming languages and baseline
programming paradigms.

LBNL Software Roadmap to Plug and Play Petaflop/s 46

7.10.5. Interoperability [______, ______, ______]

The Vendor shall provide the fully supported capability to build a single parallel program from a
mixture of baseline languages and baseline parallel programming models. Inter-language sub-
procedure invocation must be supported.

7.10.6. Memory Utilization [______, ______, ______]

An application written using a baseline programming language and using a baseline parallel
programming model shall be able to access and utilize all user-available memory on each compute
node.

7.10.7. Page Sizes [______, ______, ______]

The Vendor shall support both small (4 KB) and large (2 MB) pages. An application written using a
baseline programming language and using a baseline parallel programming model shall be able to
exploit large pages for program data.

7.11. Programming Languages

7.11.1. Assembler [______, ______, ______]

The Vendor shall provide and support an assembler.

7.11.2. Standards-Compliant Fortran [______, ______, ______]

The Vendor shall supply and support a standards-compliant Fortran compiler with the system as part
of a complete application development environment. The development environment shall be
licensed for the entire system. Support is required for Fortran 77 (ANSI X3.9-1978), Fortran 90
(ANSI X3.198-1992), and Fortran 95 (ISO/IEC 1539-1:1997). Support for Fortran 2003 (ISO/IEC
1539-1:2004) shall be required by 1 Jan 2007.

7.11.3. Standards-Compliant C [______, ______, ______]

The Vendor shall supply and support a standards-compliant C compiler with the system as part of a
complete program development environment. The development environment shall be licensed for
the entire system. Support is required for at least C89 (ANSI/ISO 9899-1989) and C99 (ISO/IEC
9899-1999).

7.11.4. Standards-Compliant C++ [______, ______, ______]

The Vendor shall supply and support a standards-compliant C++ compiler with the system as part of
a complete program development environment. The development environment shall be licensed for
the entire system. Support is required for ISO/IEC 14882:2003 (core language and C++ standard
library).

7.11.5. Standards-Compliant Java [______, ______, ______]

The Vendor shall supply and support a standards-compliant Java compiler with the system as part of
a complete program development environment. The Java development and runtime environment
shall operate and be licensed for the system partition only. Support is required for J2SE 5.0.

LBNL Software Roadmap to Plug and Play Petaflop/s 47

7.12. Programming Models

7.12.1. MPI [______, ______, ______]

The Vendor shall supply and support a library implementing the MPI 2.0 standard (except Section
5.0, Process Creation and Management). This library shall work efficiently over the Portals
interface.

7.12.2. SHMEM-Open [______, ______, ______]

The Vendor shall supply and support a library implementing the SHMEM API as described in
Section 11 and the intro_shmem man page (1/17/06). This library is modified to work efficiently
over the Portals interface.

7.12.3. UPC [______, ______, ______]

The Vendor shall supply and support a library implementing the UPC programming model as
described in the UPC Language Specifications V1.2 (May 2005). This shall be delivered by 3rd
quarter 2007.

7.12.4. Threads [______, ______, ______]

Threads are not supported

7.12.5. OpenMP [______, ______, ______]

OpenMP is not supported.

7.13. Libraries and Applications

7.13.1. Core Math Library [______, ______, ______]

The Vendor shall supply and support the optimized basic libraries for the specific hardware
deployed:

• Level 1, 2, and 3 Basic Linear Algebra Subroutines (BLAS)

• A full suite of linear algebra routines (LAPACK)

• A suite of fast Fourier transform routines (FFT) for single-precision, double-precision, single-
precision complex, and double-precision complex data types

• Vector math library support for exp, log, sin, cos, and sincos

7.13.2. ScaLAPACK Library [______, ______, ______]

The Vendor shall supply and support the ScaLAPACK library, a set of linear algebra routines
redesigned for use in parallel applications. The library shall comprise all auxiliary libraries, BLACS
and PBLAS, and conform to the public releases of ScaLAPACK 1.7, BLACS 1.1, or later versions.

7.13.3. SuperLU Library [______, ______, ______]

The Vendor shall supply and support the SuperLU library, a set of routines that solve large, sparse,
nonsymmetrical systems of linear equations. The library is written in C but can be called from
programs written in either C or Fortran. The library shall conform to LBNL technical report LBNL-
44289.

LBNL Software Roadmap to Plug and Play Petaflop/s 48

7.13.4. MPICH2 Library [______, ______, ______]

The Vendor shall supply and support the MPICH2 library, an implementation of the Message
Passing Interface (MPI). This library is modified to work efficiently over the Portals interface. The
spawn functions available in MPICH2 are not supported at this time, but otherwise the libraries are
fully MPI 2.0 compliant. Programmers can use the MPICH2 libraries to write applications in
Fortran 90, C, or C++.

7.13.5. Portals 3.3 API [______, ______, ______]

The Vendor shall supply and support the Portals 3.3 application programming interface, a
connectionless, low latency, low overhead message passing protocol. Portals provide the interface
for message passing between all nodes in the Vendor’s system. Application processes communicate
with one another by linking libraries that support the Portals 3.3 interface. Programmers shall have
the option of using the Portals 3.3 API directly when necessary.

7.13.6. ROMIO Library [______, ______, ______]

The Vendor shall supply and support ROMIO, an implementation of MPI-IO optimized for
noncontiguous access patterns based on MPI 2.0 Standard section 9.

7.13.7. Glibc Library [______, ______, ______]

The Vendor shall supply and support the GNU C/C++ glibc, a C language library for the system that
has been optimized for the lightweight kernel.

7.14. Development and Performance Tools

Unless specifically noted, all tools described in this section shall be capable of working with applications
that utilize all the compute cores and/or all user-accessible memory available on the system.

7.14.1. Graphical User Interface API [______, ______, ______]

The Vendor shall provide the standard version of X11R6 and Motif, or current versions,
applications, servers, and API libraries on the SIO nodes.

7.14.2. Debugger for Parallel Applications [______, ______, ______]

The Vendor shall provide a scalable debugger for parallel applications (e.g., TotalView from Etnus
Inc.).

7.14.3. Hardware Performance Counter Analysis Tools for Parallel Applications [______,
 ______, ______]

The Vendor shall provide CPU units with hardware counters. The interface between hardware and
user-level tools shall be provided by the kernel extension perfctr version 2.6 or later or equivalent.

7.14.4. Performance API [______, ______, ______]

The Vendor shall supply and support the Performance Application Programming Interface (PAPI)
version 3.2 or l.

7.14.5. Modules Utility [______, ______, ______]

The Vendor shall supply and support the Modules utility.

LBNL Software Roadmap to Plug and Play Petaflop/s 49

7.14.6. Performance Analyzer Tool [______, ______, ______]

The system shall have the ability to create an instrumented executable on an application build from
baseline programming languages and baseline parallel programming models without changing the
application code. By means of flags to commands or environment variables, instrumented
executables can be used in tracing, profiling, and sampling experiments. Each experiment can record
runtime, hardware performance counters, routine arguments, statistics relevant to the parallel
programming model (e.g., MPI routine times and achieved bandwidths), or I/O performance. Tools
to summarize such experiments by routine source line, routine, process rank, and application run
shall be provided.

The system shall have the ability to collect hardware performance counter data including but not
limited to: level 1 and level 2 data and instruction cache accesses, reads, hits and misses, data and
instruction TLB misses; level 1 and level 2 load misses, fixed and floating point instructions, total
cycles, stalled cycles, branch instructions (including those taken and correctly and incorrectly
predicted), vector or SIMD instructions, and floating point instructions per second.

Use of the performance analysis tool shall be scalable to the full size of the system with appropriate
choice of experiment.

Vendor shall supply and support a tool to visualize the performance data collected. The tool shall
present visualizations such as pie charts and event timelines in a readily understandable manner.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this
document is believed to contain correct information, neither the United States Government nor any agency
thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express
or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by its trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof, or The Regents of the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof or The Regents of the University of California.

